myhloli 149132d608 feat(pdf_parse): improve span filtering and add new block types hace 1 año
..
chemical_knowledge_introduction 75b4375dbd docs: update documentation path in README files hace 1 año
images 75b4375dbd docs: update documentation path in README files hace 1 año
FAQ_en_us.md 75b4375dbd docs: update documentation path in README files hace 1 año
FAQ_zh_cn.md 75b4375dbd docs: update documentation path in README files hace 1 año
README_Ubuntu_CUDA_Acceleration_en_US.md 75b4375dbd docs: update documentation path in README files hace 1 año
README_Ubuntu_CUDA_Acceleration_zh_CN.md 4c412b2878 (docs&build): switch to Aliyun PyPI mirror hace 1 año
README_Windows_CUDA_Acceleration_en_US.md 75b4375dbd docs: update documentation path in README files hace 1 año
README_Windows_CUDA_Acceleration_zh_CN.md 4c412b2878 (docs&build): switch to Aliyun PyPI mirror hace 1 año
download_models.py 75b4375dbd docs: update documentation path in README files hace 1 año
download_models_hf.py 75b4375dbd docs: update documentation path in README files hace 1 año
how_to_download_models_en.md 75b4375dbd docs: update documentation path in README files hace 1 año
how_to_download_models_zh_cn.md 75b4375dbd docs: update documentation path in README files hace 1 año
output_file_en_us.md 149132d608 feat(pdf_parse): improve span filtering and add new block types hace 1 año
output_file_zh_cn.md 149132d608 feat(pdf_parse): improve span filtering and add new block types hace 1 año

README_Ubuntu_CUDA_Acceleration_en_US.md

Ubuntu 22.04 LTS

1. Check if NVIDIA Drivers Are Installed

nvidia-smi

If you see information similar to the following, it means that the NVIDIA drivers are already installed, and you can skip Step 2.

Notice:CUDA Version should be >= 12.1, If the displayed version number is less than 12.1, please upgrade the driver.

+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 537.34                 Driver Version: 537.34       CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                     TCC/WDDM  | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 3060 Ti   WDDM  | 00000000:01:00.0  On |                  N/A |
|  0%   51C    P8              12W / 200W |   1489MiB /  8192MiB |      5%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

2. Install the Driver

If no driver is installed, use the following command:

sudo apt-get update
sudo apt-get install nvidia-driver-545

Install the proprietary driver and restart your computer after installation.

reboot

3. Install Anaconda

If Anaconda is already installed, skip this step.

wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
bash Anaconda3-2024.06-1-Linux-x86_64.sh

In the final step, enter yes, close the terminal, and reopen it.

4. Create an Environment Using Conda

Specify Python version 3.10.

conda create -n MinerU python=3.10
conda activate MinerU

5. Install Applications

pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com

❗ After installation, make sure to check the version of magic-pdf using the following command:

magic-pdf --version

If the version number is less than 0.7.0, please report the issue.

6. Download Models

Refer to detailed instructions on how to download model files.

7. Understand the Location of the Configuration File

After completing the 6. Download Models step, the script will automatically generate a magic-pdf.json file in the user directory and configure the default model path. You can find the magic-pdf.json file in your user directory.

The user directory for Linux is "/home/username".

8. First Run

Download a sample file from the repository and test it.

wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf
magic-pdf -p small_ocr.pdf

9. Test CUDA Acceleration

If your graphics card has at least 8GB of VRAM, follow these steps to test CUDA acceleration:

  1. Modify the value of "device-mode" in the magic-pdf.json configuration file located in your home directory.

    {
     "device-mode": "cuda"
    }
    
  2. Test CUDA acceleration with the following command:

    magic-pdf -p small_ocr.pdf
    

10. Enable CUDA Acceleration for OCR

  1. Download paddlepaddle-gpu. Installation will automatically enable OCR acceleration.

    python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
    
  2. Test OCR acceleration with the following command:

    magic-pdf -p small_ocr.pdf