| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- import os
- import time
- import cv2
- import numpy as np
- import yaml
- from PIL import Image
- from ultralytics import YOLO
- from loguru import logger
- from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
- from unimernet.common.config import Config
- import unimernet.tasks as tasks
- from unimernet.processors import load_processor
- import argparse
- from torchvision import transforms
- from torch.utils.data import Dataset, DataLoader
- from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
- from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
- def layout_model_init(weight, config_file):
- model = Layoutlmv3_Predictor(weight, config_file)
- return model
- def mfr_model_init(weight_dir, cfg_path, device='cpu'):
- args = argparse.Namespace(cfg_path=cfg_path, options=None)
- cfg = Config(args)
- cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
- cfg.config.model.model_config.model_name = weight_dir
- cfg.config.model.tokenizer_config.path = weight_dir
- task = tasks.setup_task(cfg)
- model = task.build_model(cfg)
- model = model.to(device)
- vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
- return model, vis_processor
- class MathDataset(Dataset):
- def __init__(self, image_paths, transform=None):
- self.image_paths = image_paths
- self.transform = transform
- def __len__(self):
- return len(self.image_paths)
- def __getitem__(self, idx):
- # if not pil image, then convert to pil image
- if isinstance(self.image_paths[idx], str):
- raw_image = Image.open(self.image_paths[idx])
- else:
- raw_image = self.image_paths[idx]
- if self.transform:
- image = self.transform(raw_image)
- return image
- class CustomPEKModel:
- def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
- """
- ======== model init ========
- """
- # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
- current_file_path = os.path.abspath(__file__)
- # 获取当前文件所在的目录(model)
- current_dir = os.path.dirname(current_file_path)
- # 上一级目录(magic_pdf)
- root_dir = os.path.dirname(current_dir)
- # model_config目录
- model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
- # 构建 model_configs.yaml 文件的完整路径
- config_path = os.path.join(model_config_dir, 'model_configs.yaml')
- with open(config_path, "r") as f:
- self.configs = yaml.load(f, Loader=yaml.FullLoader)
- # 初始化解析配置
- self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
- self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
- self.apply_ocr = ocr
- logger.info(
- "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
- self.apply_layout, self.apply_formula, self.apply_ocr
- )
- )
- assert self.apply_layout, "DocAnalysis must contain layout model."
- # 初始化解析方案
- self.device = self.configs["config"]["device"]
- logger.info("using device: {}".format(self.device))
- # 初始化layout模型
- self.layout_model = layout_model_init(
- os.path.join(root_dir, self.configs['weights']['layout']),
- os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")
- )
- # 初始化公式识别
- if self.apply_formula:
- # 初始化公式检测模型
- self.mfd_model = YOLO(model=str(os.path.join(root_dir, self.configs["weights"]["mfd"])))
- # 初始化公式解析模型
- mfr_config_path = os.path.join(model_config_dir, 'UniMERNet', 'demo.yaml')
- self.mfr_model, mfr_vis_processors = mfr_model_init(
- os.path.join(root_dir, self.configs["weights"]["mfr"]), mfr_config_path,
- device=self.device)
- self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
- # 初始化ocr
- if self.apply_ocr:
- self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
- logger.info('DocAnalysis init done!')
- def __call__(self, images):
- # layout检测 + 公式检测
- doc_layout_result = []
- latex_filling_list = []
- mf_image_list = []
- for idx, img_dict in enumerate(images):
- image = img_dict["img"]
- img_height, img_width = img_dict["height"], img_dict["width"]
- layout_res = self.layout_model(image, ignore_catids=[])
- # 公式检测
- mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
- for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
- xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
- new_item = {
- 'category_id': 13 + int(cla.item()),
- 'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
- 'score': round(float(conf.item()), 2),
- 'latex': '',
- }
- layout_res['layout_dets'].append(new_item)
- latex_filling_list.append(new_item)
- bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
- mf_image_list.append(bbox_img)
- layout_res['page_info'] = dict(
- page_no=idx,
- height=img_height,
- width=img_width
- )
- doc_layout_result.append(layout_res)
- # 公式识别,因为识别速度较慢,为了提速,把单个pdf的所有公式裁剪完,一起批量做识别。
- a = time.time()
- dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
- dataloader = DataLoader(dataset, batch_size=128, num_workers=0)
- mfr_res = []
- for imgs in dataloader:
- imgs = imgs.to(self.device)
- output = self.mfr_model.generate({'image': imgs})
- mfr_res.extend(output['pred_str'])
- for res, latex in zip(latex_filling_list, mfr_res):
- res['latex'] = latex_rm_whitespace(latex)
- b = time.time()
- logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {round(b - a, 2)}")
- # ocr识别
- if self.apply_ocr:
- for idx, img_dict in enumerate(images):
- image = img_dict["img"]
- pil_img = Image.fromarray(image)
- single_page_res = doc_layout_result[idx]['layout_dets']
- single_page_mfdetrec_res = []
- for res in single_page_res:
- if int(res['category_id']) in [13, 14]:
- xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
- xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
- single_page_mfdetrec_res.append({
- "bbox": [xmin, ymin, xmax, ymax],
- })
- for res in single_page_res:
- if int(res['category_id']) in [0, 1, 2, 4, 6, 7]: # 需要进行ocr的类别
- xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
- xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
- crop_box = [xmin, ymin, xmax, ymax]
- cropped_img = Image.new('RGB', pil_img.size, 'white')
- cropped_img.paste(pil_img.crop(crop_box), crop_box)
- cropped_img = cv2.cvtColor(np.asarray(cropped_img), cv2.COLOR_RGB2BGR)
- ocr_res = self.ocr_model.ocr(cropped_img, mfd_res=single_page_mfdetrec_res)[0]
- if ocr_res:
- for box_ocr_res in ocr_res:
- p1, p2, p3, p4 = box_ocr_res[0]
- text, score = box_ocr_res[1]
- doc_layout_result[idx]['layout_dets'].append({
- 'category_id': 15,
- 'poly': p1 + p2 + p3 + p4,
- 'score': round(score, 2),
- 'text': text,
- })
- return doc_layout_result
|