Xiaomeng Zhao 7ce807f43f Create download_models.py пре 1 година
..
images 40e0827e60 Feat/impl cli (#264) пре 1 година
FAQ_en_us.md 4983bc1df6 Update FAQ_en_us.md пре 1 година
FAQ_zh_cn.md 2f01dbab2b Update FAQ_zh_cn.md пре 1 година
README_Ubuntu_CUDA_Acceleration_en_US.md 409ece8231 Update README_Ubuntu_CUDA_Acceleration_en_US.md пре 1 година
README_Ubuntu_CUDA_Acceleration_zh_CN.md 18f82ab7d1 Update README_Ubuntu_CUDA_Acceleration_zh_CN.md пре 1 година
README_Windows_CUDA_Acceleration_en_US.md 2450353009 Update README_Windows_CUDA_Acceleration_en_US.md пре 1 година
README_Windows_CUDA_Acceleration_zh_CN.md 8601d2336f Update README_Windows_CUDA_Acceleration_zh_CN.md пре 1 година
download_models.py 7ce807f43f Create download_models.py пре 1 година
how_to_download_models_en.md d2a8cb4265 docs(models-download): update steps and remove deprecated sectionsUpdate the model download instructions to reflect the current process, removing пре 1 година
how_to_download_models_zh_cn.md 8da5328f18 docs(zh-cn): emphasize additional steps in model download guide пре 1 година
output_file_en_us.md cf704253f0 Create output_file_en_us.md пре 1 година
output_file_zh_cn.md 41737adf8c docs(output-file): correct poly coordinate format and update table descriptions пре 1 година

README_Ubuntu_CUDA_Acceleration_en_US.md

Ubuntu 22.04 LTS

1. Check if NVIDIA Drivers Are Installed

   nvidia-smi

If you see information similar to the following, it means that the NVIDIA drivers are already installed, and you can skip Step 2.

   +---------------------------------------------------------------------------------------+
   | NVIDIA-SMI 537.34                 Driver Version: 537.34       CUDA Version: 12.2     |
   |-----------------------------------------+----------------------+----------------------+
   | GPU  Name                     TCC/WDDM  | Bus-Id        Disp.A | Volatile Uncorr. ECC |
   | Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
   |                                         |                      |               MIG M. |
   |=========================================+======================+======================|
   |   0  NVIDIA GeForce RTX 3060 Ti   WDDM  | 00000000:01:00.0  On |                  N/A |
   |  0%   51C    P8              12W / 200W |   1489MiB /  8192MiB |      5%      Default |
   |                                         |                      |                  N/A |
   +-----------------------------------------+----------------------+----------------------+

2. Install the Driver

If no driver is installed, use the following command:

   sudo apt-get update
   sudo apt-get install nvidia-driver-545

Install the proprietary driver and restart your computer after installation.

   reboot

3. Install Anaconda

If Anaconda is already installed, skip this step.

   wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
   bash Anaconda3-2024.06-1-Linux-x86_64.sh

In the final step, enter yes, close the terminal, and reopen it.

4. Create an Environment Using Conda

Specify Python version 3.10.

   conda create -n MinerU python=3.10
   conda activate MinerU

5. Install Applications

   pip install magic-pdf[full]==0.7.0b1 --extra-index-url https://wheels.myhloli.com

❗ After installation, make sure to check the version of magic-pdf using the following command:

   magic-pdf --version

If the version number is less than 0.7.0, please report the issue.

6. Download Models

Refer to detailed instructions on how to download model files.
After downloading, move the models directory to an SSD with more space.

❗ After downloading the models, ensure they are complete:

  • Check that the file sizes match the description on the website.
  • If possible, verify the integrity using SHA256.

7. Configuration Before First Run

Obtain the configuration template file magic-pdf.template.json from the root directory of the repository.

❗ Execute the following command to copy the configuration file to your home directory, otherwise the program will not run:

   wget https://github.com/opendatalab/MinerU/raw/master/magic-pdf.template.json
   cp magic-pdf.template.json ~/magic-pdf.json

Find the magic-pdf.json file in your home directory and configure "models-dir" to be the directory where the model weights from Step 6 were downloaded.

❗ Correctly specify the absolute path of the directory containing the model weights; otherwise, the program will fail due to missing model files.

   {
     "models-dir": "/tmp/models"
   }

8. First Run

Download a sample file from the repository and test it.

   wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf
   magic-pdf -p small_ocr.pdf

9. Test CUDA Acceleration

If your graphics card has at least 8GB of VRAM, follow these steps to test CUDA acceleration:

  1. Modify the value of "device-mode" in the magic-pdf.json configuration file located in your home directory.

    {
     "device-mode": "cuda"
    }
    
  2. Test CUDA acceleration with the following command:

    magic-pdf -p small_ocr.pdf
    

10. Enable CUDA Acceleration for OCR

❗ The following operations require a graphics card with at least 16GB of VRAM; otherwise, the program may crash or experience reduced performance.

  1. Download paddlepaddle-gpu. Installation will automatically enable OCR acceleration.

    python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
    
  2. Test OCR acceleration with the following command:

    magic-pdf -p small_ocr.pdf