pipeline_magic_model.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in
  2. from mineru.utils.enum_class import CategoryId, ContentType
  3. class MagicModel:
  4. """每个函数没有得到元素的时候返回空list."""
  5. def __init__(self, page_model_info: dict, scale: float):
  6. self.__page_model_info = page_model_info
  7. self.__scale = scale
  8. """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
  9. self.__fix_axis()
  10. """删除置信度特别低的模型数据(<0.05),提高质量"""
  11. self.__fix_by_remove_low_confidence()
  12. """删除高iou(>0.9)数据中置信度较低的那个"""
  13. self.__fix_by_remove_high_iou_and_low_confidence()
  14. self.__fix_footnote()
  15. def __fix_axis(self):
  16. need_remove_list = []
  17. layout_dets = self.__page_model_info['layout_dets']
  18. for layout_det in layout_dets:
  19. x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
  20. bbox = [
  21. int(x0 / self.__scale),
  22. int(y0 / self.__scale),
  23. int(x1 / self.__scale),
  24. int(y1 / self.__scale),
  25. ]
  26. layout_det['bbox'] = bbox
  27. # 删除高度或者宽度小于等于0的spans
  28. if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
  29. need_remove_list.append(layout_det)
  30. for need_remove in need_remove_list:
  31. layout_dets.remove(need_remove)
  32. def __fix_by_remove_low_confidence(self):
  33. need_remove_list = []
  34. layout_dets = self.__page_model_info['layout_dets']
  35. for layout_det in layout_dets:
  36. if layout_det['score'] <= 0.05:
  37. need_remove_list.append(layout_det)
  38. else:
  39. continue
  40. for need_remove in need_remove_list:
  41. layout_dets.remove(need_remove)
  42. def __fix_by_remove_high_iou_and_low_confidence(self):
  43. need_remove_list = []
  44. layout_dets = self.__page_model_info['layout_dets']
  45. for i in range(len(layout_dets)):
  46. for j in range(i + 1, len(layout_dets)):
  47. layout_det1 = layout_dets[i]
  48. layout_det2 = layout_dets[j]
  49. if layout_det1['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
  50. if (
  51. calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
  52. > 0.9
  53. ):
  54. if layout_det1['score'] < layout_det2['score']:
  55. layout_det_need_remove = layout_det1
  56. else:
  57. layout_det_need_remove = layout_det2
  58. if layout_det_need_remove not in need_remove_list:
  59. need_remove_list.append(layout_det_need_remove)
  60. else:
  61. continue
  62. else:
  63. continue
  64. for need_remove in need_remove_list:
  65. layout_dets.remove(need_remove)
  66. def __fix_footnote(self):
  67. # 3: figure, 5: table, 7: footnote
  68. footnotes = []
  69. figures = []
  70. tables = []
  71. for obj in self.__page_model_info['layout_dets']:
  72. if obj['category_id'] == 7:
  73. footnotes.append(obj)
  74. elif obj['category_id'] == 3:
  75. figures.append(obj)
  76. elif obj['category_id'] == 5:
  77. tables.append(obj)
  78. if len(footnotes) * len(figures) == 0:
  79. continue
  80. dis_figure_footnote = {}
  81. dis_table_footnote = {}
  82. for i in range(len(footnotes)):
  83. for j in range(len(figures)):
  84. pos_flag_count = sum(
  85. list(
  86. map(
  87. lambda x: 1 if x else 0,
  88. bbox_relative_pos(
  89. footnotes[i]['bbox'], figures[j]['bbox']
  90. ),
  91. )
  92. )
  93. )
  94. if pos_flag_count > 1:
  95. continue
  96. dis_figure_footnote[i] = min(
  97. self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
  98. dis_figure_footnote.get(i, float('inf')),
  99. )
  100. for i in range(len(footnotes)):
  101. for j in range(len(tables)):
  102. pos_flag_count = sum(
  103. list(
  104. map(
  105. lambda x: 1 if x else 0,
  106. bbox_relative_pos(
  107. footnotes[i]['bbox'], tables[j]['bbox']
  108. ),
  109. )
  110. )
  111. )
  112. if pos_flag_count > 1:
  113. continue
  114. dis_table_footnote[i] = min(
  115. self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
  116. dis_table_footnote.get(i, float('inf')),
  117. )
  118. for i in range(len(footnotes)):
  119. if i not in dis_figure_footnote:
  120. continue
  121. if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
  122. footnotes[i]['category_id'] = CategoryId.ImageFootnote
  123. def _bbox_distance(self, bbox1, bbox2):
  124. left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
  125. flags = [left, right, bottom, top]
  126. count = sum([1 if v else 0 for v in flags])
  127. if count > 1:
  128. return float('inf')
  129. if left or right:
  130. l1 = bbox1[3] - bbox1[1]
  131. l2 = bbox2[3] - bbox2[1]
  132. else:
  133. l1 = bbox1[2] - bbox1[0]
  134. l2 = bbox2[2] - bbox2[0]
  135. if l2 > l1 and (l2 - l1) / l1 > 0.3:
  136. return float('inf')
  137. return bbox_distance(bbox1, bbox2)
  138. def __reduct_overlap(self, bboxes):
  139. N = len(bboxes)
  140. keep = [True] * N
  141. for i in range(N):
  142. for j in range(N):
  143. if i == j:
  144. continue
  145. if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
  146. keep[i] = False
  147. return [bboxes[i] for i in range(N) if keep[i]]
  148. def __tie_up_category_by_distance_v3(
  149. self,
  150. subject_category_id: int,
  151. object_category_id: int,
  152. ):
  153. subjects = self.__reduct_overlap(
  154. list(
  155. map(
  156. lambda x: {'bbox': x['bbox'], 'score': x['score']},
  157. filter(
  158. lambda x: x['category_id'] == subject_category_id,
  159. self.__page_model_info['layout_dets'],
  160. ),
  161. )
  162. )
  163. )
  164. objects = self.__reduct_overlap(
  165. list(
  166. map(
  167. lambda x: {'bbox': x['bbox'], 'score': x['score']},
  168. filter(
  169. lambda x: x['category_id'] == object_category_id,
  170. self.__page_model_info['layout_dets'],
  171. ),
  172. )
  173. )
  174. )
  175. ret = []
  176. N, M = len(subjects), len(objects)
  177. subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
  178. objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
  179. OBJ_IDX_OFFSET = 10000
  180. SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
  181. all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
  182. seen_idx = set()
  183. seen_sub_idx = set()
  184. while N > len(seen_sub_idx):
  185. candidates = []
  186. for idx, kind, x0, y0 in all_boxes_with_idx:
  187. if idx in seen_idx:
  188. continue
  189. candidates.append((idx, kind, x0, y0))
  190. if len(candidates) == 0:
  191. break
  192. left_x = min([v[2] for v in candidates])
  193. top_y = min([v[3] for v in candidates])
  194. candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
  195. fst_idx, fst_kind, left_x, top_y = candidates[0]
  196. candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y)**2)
  197. nxt = None
  198. for i in range(1, len(candidates)):
  199. if candidates[i][1] ^ fst_kind == 1:
  200. nxt = candidates[i]
  201. break
  202. if nxt is None:
  203. break
  204. if fst_kind == SUB_BIT_KIND:
  205. sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
  206. else:
  207. sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
  208. pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
  209. nearest_dis = float('inf')
  210. for i in range(N):
  211. if i in seen_idx or i == sub_idx:continue
  212. nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
  213. if pair_dis >= 3*nearest_dis:
  214. seen_idx.add(sub_idx)
  215. continue
  216. seen_idx.add(sub_idx)
  217. seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
  218. seen_sub_idx.add(sub_idx)
  219. ret.append(
  220. {
  221. 'sub_bbox': {
  222. 'bbox': subjects[sub_idx]['bbox'],
  223. 'score': subjects[sub_idx]['score'],
  224. },
  225. 'obj_bboxes': [
  226. {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
  227. ],
  228. 'sub_idx': sub_idx,
  229. }
  230. )
  231. for i in range(len(objects)):
  232. j = i + OBJ_IDX_OFFSET
  233. if j in seen_idx:
  234. continue
  235. seen_idx.add(j)
  236. nearest_dis, nearest_sub_idx = float('inf'), -1
  237. for k in range(len(subjects)):
  238. dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
  239. if dis < nearest_dis:
  240. nearest_dis = dis
  241. nearest_sub_idx = k
  242. for k in range(len(subjects)):
  243. if k != nearest_sub_idx: continue
  244. if k in seen_sub_idx:
  245. for kk in range(len(ret)):
  246. if ret[kk]['sub_idx'] == k:
  247. ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
  248. break
  249. else:
  250. ret.append(
  251. {
  252. 'sub_bbox': {
  253. 'bbox': subjects[k]['bbox'],
  254. 'score': subjects[k]['score'],
  255. },
  256. 'obj_bboxes': [
  257. {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
  258. ],
  259. 'sub_idx': k,
  260. }
  261. )
  262. seen_sub_idx.add(k)
  263. seen_idx.add(k)
  264. for i in range(len(subjects)):
  265. if i in seen_sub_idx:
  266. continue
  267. ret.append(
  268. {
  269. 'sub_bbox': {
  270. 'bbox': subjects[i]['bbox'],
  271. 'score': subjects[i]['score'],
  272. },
  273. 'obj_bboxes': [],
  274. 'sub_idx': i,
  275. }
  276. )
  277. return ret
  278. def get_imgs(self):
  279. with_captions = self.__tie_up_category_by_distance_v3(
  280. 3, 4
  281. )
  282. with_footnotes = self.__tie_up_category_by_distance_v3(
  283. 3, CategoryId.ImageFootnote
  284. )
  285. ret = []
  286. for v in with_captions:
  287. record = {
  288. 'image_body': v['sub_bbox'],
  289. 'image_caption_list': v['obj_bboxes'],
  290. }
  291. filter_idx = v['sub_idx']
  292. d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
  293. record['image_footnote_list'] = d['obj_bboxes']
  294. ret.append(record)
  295. return ret
  296. def get_tables(self) -> list:
  297. with_captions = self.__tie_up_category_by_distance_v3(
  298. 5, 6
  299. )
  300. with_footnotes = self.__tie_up_category_by_distance_v3(
  301. 5, 7
  302. )
  303. ret = []
  304. for v in with_captions:
  305. record = {
  306. 'table_body': v['sub_bbox'],
  307. 'table_caption_list': v['obj_bboxes'],
  308. }
  309. filter_idx = v['sub_idx']
  310. d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
  311. record['table_footnote_list'] = d['obj_bboxes']
  312. ret.append(record)
  313. return ret
  314. def get_equations(self) -> tuple[list, list, list]: # 有坐标,也有字
  315. inline_equations = self.__get_blocks_by_type(
  316. CategoryId.InlineEquation, ['latex']
  317. )
  318. interline_equations = self.__get_blocks_by_type(
  319. CategoryId.InterlineEquation_YOLO, ['latex']
  320. )
  321. interline_equations_blocks = self.__get_blocks_by_type(
  322. CategoryId.InterlineEquation_Layout
  323. )
  324. return inline_equations, interline_equations, interline_equations_blocks
  325. def get_discarded(self) -> list: # 自研模型,只有坐标
  326. blocks = self.__get_blocks_by_type(CategoryId.Abandon)
  327. return blocks
  328. def get_text_blocks(self) -> list: # 自研模型搞的,只有坐标,没有字
  329. blocks = self.__get_blocks_by_type(CategoryId.Text)
  330. return blocks
  331. def get_title_blocks(self) -> list: # 自研模型,只有坐标,没字
  332. blocks = self.__get_blocks_by_type(CategoryId.Title)
  333. return blocks
  334. def get_all_spans(self) -> list:
  335. def remove_duplicate_spans(spans):
  336. new_spans = []
  337. for span in spans:
  338. if not any(span == existing_span for existing_span in new_spans):
  339. new_spans.append(span)
  340. return new_spans
  341. all_spans = []
  342. layout_dets = self.__page_model_info['layout_dets']
  343. allow_category_id_list = [3, 5, 13, 14, 15]
  344. """当成span拼接的"""
  345. # 3: 'image', # 图片
  346. # 5: 'table', # 表格
  347. # 13: 'inline_equation', # 行内公式
  348. # 14: 'interline_equation', # 行间公式
  349. # 15: 'text', # ocr识别文本
  350. for layout_det in layout_dets:
  351. category_id = layout_det['category_id']
  352. if category_id in allow_category_id_list:
  353. span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
  354. if category_id == 3:
  355. span['type'] = ContentType.IMAGE
  356. elif category_id == 5:
  357. # 获取table模型结果
  358. latex = layout_det.get('latex', None)
  359. html = layout_det.get('html', None)
  360. if latex:
  361. span['latex'] = latex
  362. elif html:
  363. span['html'] = html
  364. span['type'] = ContentType.TABLE
  365. elif category_id == 13:
  366. span['content'] = layout_det['latex']
  367. span['type'] = ContentType.INLINE_EQUATION
  368. elif category_id == 14:
  369. span['content'] = layout_det['latex']
  370. span['type'] = ContentType.INTERLINE_EQUATION
  371. elif category_id == 15:
  372. span['content'] = layout_det['text']
  373. span['type'] = ContentType.TEXT
  374. all_spans.append(span)
  375. return remove_duplicate_spans(all_spans)
  376. def __get_blocks_by_type(
  377. self, category_type: int, extra_col=None
  378. ) -> list:
  379. if extra_col is None:
  380. extra_col = []
  381. blocks = []
  382. layout_dets = self.__page_model_info.get('layout_dets', [])
  383. for item in layout_dets:
  384. category_id = item.get('category_id', -1)
  385. bbox = item.get('bbox', None)
  386. if category_id == category_type:
  387. block = {
  388. 'bbox': bbox,
  389. 'score': item.get('score'),
  390. }
  391. for col in extra_col:
  392. block[col] = item.get(col, None)
  393. blocks.append(block)
  394. return blocks