| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671 |
- """ Vision Transformer (ViT) in PyTorch
- A PyTorch implement of Vision Transformers as described in
- 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
- The official jax code is released and available at https://github.com/google-research/vision_transformer
- Status/TODO:
- * Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
- * Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
- * Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
- * Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.
- Acknowledgments:
- * The paper authors for releasing code and weights, thanks!
- * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
- for some einops/einsum fun
- * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
- * Bert reference code checks against Huggingface Transformers and Tensorflow Bert
- Hacked together by / Copyright 2020 Ross Wightman
- """
- import warnings
- import math
- import torch
- from functools import partial
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- from timm.models.layers import drop_path, to_2tuple, trunc_normal_
- def _cfg(url='', **kwargs):
- return {
- 'url': url,
- 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
- 'crop_pct': .9, 'interpolation': 'bicubic',
- 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
- **kwargs
- }
- class DropPath(nn.Module):
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
- """
- def __init__(self, drop_prob=None):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
- def forward(self, x):
- return drop_path(x, self.drop_prob, self.training)
- def extra_repr(self) -> str:
- return 'p={}'.format(self.drop_prob)
- class Mlp(nn.Module):
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- # x = self.drop(x)
- # commit this for the orignal BERT implement
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class Attention(nn.Module):
- def __init__(
- self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
- proj_drop=0., window_size=None, attn_head_dim=None):
- super().__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- if attn_head_dim is not None:
- head_dim = attn_head_dim
- all_head_dim = head_dim * self.num_heads
- # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
- self.scale = qk_scale or head_dim ** -0.5
- self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
- if qkv_bias:
- self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
- self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
- else:
- self.q_bias = None
- self.v_bias = None
- if window_size:
- self.window_size = window_size
- self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
- # cls to token & token 2 cls & cls to cls
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(window_size[0])
- coords_w = torch.arange(window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
- relative_position_index = \
- torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = self.num_relative_distance - 3
- relative_position_index[0:, 0] = self.num_relative_distance - 2
- relative_position_index[0, 0] = self.num_relative_distance - 1
- self.register_buffer("relative_position_index", relative_position_index)
- # trunc_normal_(self.relative_position_bias_table, std=.0)
- else:
- self.window_size = None
- self.relative_position_bias_table = None
- self.relative_position_index = None
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(all_head_dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- def forward(self, x, rel_pos_bias=None, training_window_size=None):
- B, N, C = x.shape
- qkv_bias = None
- if self.q_bias is not None:
- qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
- # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
- qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
- if self.relative_position_bias_table is not None:
- if training_window_size == self.window_size:
- relative_position_bias = \
- self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1] + 1,
- self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
- else:
- training_window_size = tuple(training_window_size.tolist())
- new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
- # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
- new_relative_position_bias_table = F.interpolate(
- self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads,
- 2 * self.window_size[0] - 1,
- 2 * self.window_size[1] - 1),
- size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic',
- align_corners=False)
- new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads,
- new_num_relative_distance - 3).permute(
- 1, 0)
- new_relative_position_bias_table = torch.cat(
- [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0)
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(training_window_size[0])
- coords_w = torch.arange(training_window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += training_window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
- relative_position_index = \
- torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2,
- dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = new_num_relative_distance - 3
- relative_position_index[0:, 0] = new_num_relative_distance - 2
- relative_position_index[0, 0] = new_num_relative_distance - 1
- relative_position_bias = \
- new_relative_position_bias_table[relative_position_index.view(-1)].view(
- training_window_size[0] * training_window_size[1] + 1,
- training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- attn = attn + relative_position_bias.unsqueeze(0)
- if rel_pos_bias is not None:
- attn = attn + rel_pos_bias
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
- x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class Block(nn.Module):
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
- drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
- window_size=None, attn_head_dim=None):
- super().__init__()
- self.norm1 = norm_layer(dim)
- self.attn = Attention(
- dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
- attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
- if init_values is not None:
- self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
- self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
- else:
- self.gamma_1, self.gamma_2 = None, None
- def forward(self, x, rel_pos_bias=None, training_window_size=None):
- if self.gamma_1 is None:
- x = x + self.drop_path(
- self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size))
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- else:
- x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias,
- training_window_size=training_window_size))
- x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
- return x
- class PatchEmbed(nn.Module):
- """ Image to Patch Embedding
- """
- def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768):
- super().__init__()
- img_size = to_2tuple(img_size)
- patch_size = to_2tuple(patch_size)
- num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
- self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
- self.num_patches_w = self.patch_shape[0]
- self.num_patches_h = self.patch_shape[1]
- # the so-called patch_shape is the patch shape during pre-training
- self.img_size = img_size
- self.patch_size = patch_size
- self.num_patches = num_patches
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
- def forward(self, x, position_embedding=None, **kwargs):
- # FIXME look at relaxing size constraints
- # assert H == self.img_size[0] and W == self.img_size[1], \
- # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
- x = self.proj(x)
- Hp, Wp = x.shape[2], x.shape[3]
- if position_embedding is not None:
- # interpolate the position embedding to the corresponding size
- position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3,
- 1, 2)
- position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic')
- x = x + position_embedding
- x = x.flatten(2).transpose(1, 2)
- return x, (Hp, Wp)
- class HybridEmbed(nn.Module):
- """ CNN Feature Map Embedding
- Extract feature map from CNN, flatten, project to embedding dim.
- """
- def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768):
- super().__init__()
- assert isinstance(backbone, nn.Module)
- img_size = to_2tuple(img_size)
- self.img_size = img_size
- self.backbone = backbone
- if feature_size is None:
- with torch.no_grad():
- # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
- # map for all networks, the feature metadata has reliable channel and stride info, but using
- # stride to calc feature dim requires info about padding of each stage that isn't captured.
- training = backbone.training
- if training:
- backbone.eval()
- o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
- feature_size = o.shape[-2:]
- feature_dim = o.shape[1]
- backbone.train(training)
- else:
- feature_size = to_2tuple(feature_size)
- feature_dim = self.backbone.feature_info.channels()[-1]
- self.num_patches = feature_size[0] * feature_size[1]
- self.proj = nn.Linear(feature_dim, embed_dim)
- def forward(self, x):
- x = self.backbone(x)[-1]
- x = x.flatten(2).transpose(1, 2)
- x = self.proj(x)
- return x
- class RelativePositionBias(nn.Module):
- def __init__(self, window_size, num_heads):
- super().__init__()
- self.window_size = window_size
- self.num_heads = num_heads
- self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
- # cls to token & token 2 cls & cls to cls
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(window_size[0])
- coords_w = torch.arange(window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
- relative_position_index = \
- torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = self.num_relative_distance - 3
- relative_position_index[0:, 0] = self.num_relative_distance - 2
- relative_position_index[0, 0] = self.num_relative_distance - 1
- self.register_buffer("relative_position_index", relative_position_index)
- # trunc_normal_(self.relative_position_bias_table, std=.02)
- def forward(self, training_window_size):
- if training_window_size == self.window_size:
- relative_position_bias = \
- self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1] + 1,
- self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- else:
- training_window_size = tuple(training_window_size.tolist())
- new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
- # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
- new_relative_position_bias_table = F.interpolate(
- self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads,
- 2 * self.window_size[0] - 1,
- 2 * self.window_size[1] - 1),
- size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic',
- align_corners=False)
- new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads,
- new_num_relative_distance - 3).permute(
- 1, 0)
- new_relative_position_bias_table = torch.cat(
- [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0)
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(training_window_size[0])
- coords_w = torch.arange(training_window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
- relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += training_window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
- relative_position_index = \
- torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2,
- dtype=relative_coords.dtype)
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
- relative_position_index[0, 0:] = new_num_relative_distance - 3
- relative_position_index[0:, 0] = new_num_relative_distance - 2
- relative_position_index[0, 0] = new_num_relative_distance - 1
- relative_position_bias = \
- new_relative_position_bias_table[relative_position_index.view(-1)].view(
- training_window_size[0] * training_window_size[1] + 1,
- training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
- return relative_position_bias
- class BEiT(nn.Module):
- """ Vision Transformer with support for patch or hybrid CNN input stage
- """
- def __init__(self,
- img_size=[224, 224],
- patch_size=16,
- in_chans=3,
- num_classes=80,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4.,
- qkv_bias=False,
- qk_scale=None,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.,
- hybrid_backbone=None,
- norm_layer=None,
- init_values=None,
- use_abs_pos_emb=False,
- use_rel_pos_bias=False,
- use_shared_rel_pos_bias=False,
- use_checkpoint=True,
- pretrained=None,
- out_features=None,
- ):
- super(BEiT, self).__init__()
- norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
- self.num_classes = num_classes
- self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
- self.use_checkpoint = use_checkpoint
- if hybrid_backbone is not None:
- self.patch_embed = HybridEmbed(
- hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
- else:
- self.patch_embed = PatchEmbed(
- img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
- num_patches = self.patch_embed.num_patches
- self.out_features = out_features
- self.out_indices = [int(name[5:]) for name in out_features]
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
- # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
- if use_abs_pos_emb:
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
- else:
- self.pos_embed = None
- self.pos_drop = nn.Dropout(p=drop_rate)
- self.use_shared_rel_pos_bias = use_shared_rel_pos_bias
- if use_shared_rel_pos_bias:
- self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
- else:
- self.rel_pos_bias = None
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
- self.use_rel_pos_bias = use_rel_pos_bias
- self.blocks = nn.ModuleList([
- Block(
- dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
- init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
- for i in range(depth)])
- # trunc_normal_(self.mask_token, std=.02)
- if patch_size == 16:
- self.fpn1 = nn.Sequential(
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
- # nn.SyncBatchNorm(embed_dim),
- nn.BatchNorm2d(embed_dim),
- nn.GELU(),
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
- )
- self.fpn2 = nn.Sequential(
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
- )
- self.fpn3 = nn.Identity()
- self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
- elif patch_size == 8:
- self.fpn1 = nn.Sequential(
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
- )
- self.fpn2 = nn.Identity()
- self.fpn3 = nn.Sequential(
- nn.MaxPool2d(kernel_size=2, stride=2),
- )
- self.fpn4 = nn.Sequential(
- nn.MaxPool2d(kernel_size=4, stride=4),
- )
- if self.pos_embed is not None:
- trunc_normal_(self.pos_embed, std=.02)
- trunc_normal_(self.cls_token, std=.02)
- self.apply(self._init_weights)
- self.fix_init_weight()
- def fix_init_weight(self):
- def rescale(param, layer_id):
- param.div_(math.sqrt(2.0 * layer_id))
- for layer_id, layer in enumerate(self.blocks):
- rescale(layer.attn.proj.weight.data, layer_id + 1)
- rescale(layer.mlp.fc2.weight.data, layer_id + 1)
- def _init_weights(self, m):
- if isinstance(m, nn.Linear):
- trunc_normal_(m.weight, std=.02)
- if isinstance(m, nn.Linear) and m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.LayerNorm):
- nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
- '''
- def init_weights(self):
- """Initialize the weights in backbone.
- Args:
- pretrained (str, optional): Path to pre-trained weights.
- Defaults to None.
- """
- logger = get_root_logger()
- if self.pos_embed is not None:
- trunc_normal_(self.pos_embed, std=.02)
- trunc_normal_(self.cls_token, std=.02)
- self.apply(self._init_weights)
- self.fix_init_weight()
- if self.init_cfg is None:
- logger.warn(f'No pre-trained weights for '
- f'{self.__class__.__name__}, '
- f'training start from scratch')
- else:
- assert 'checkpoint' in self.init_cfg, f'Only support ' \
- f'specify `Pretrained` in ' \
- f'`init_cfg` in ' \
- f'{self.__class__.__name__} '
- logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}")
- load_checkpoint(self,
- filename=self.init_cfg['checkpoint'],
- strict=False,
- logger=logger,
- beit_spec_expand_rel_pos = self.use_rel_pos_bias,
- )
- '''
- def get_num_layers(self):
- return len(self.blocks)
- @torch.jit.ignore
- def no_weight_decay(self):
- return {'pos_embed', 'cls_token'}
- def forward_features(self, x):
- B, C, H, W = x.shape
- x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None)
- # Hp, Wp are HW for patches
- batch_size, seq_len, _ = x.size()
- cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
- if self.pos_embed is not None:
- cls_tokens = cls_tokens + self.pos_embed[:, :1, :]
- x = torch.cat((cls_tokens, x), dim=1)
- x = self.pos_drop(x)
- features = []
- training_window_size = torch.tensor([Hp, Wp])
- rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None
- for i, blk in enumerate(self.blocks):
- if self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size)
- else:
- x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)
- if i in self.out_indices:
- xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp)
- features.append(xp.contiguous())
- ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
- for i in range(len(features)):
- features[i] = ops[i](features[i])
- feat_out = {}
- for name, value in zip(self.out_features, features):
- feat_out[name] = value
- return feat_out
- def forward(self, x):
- x = self.forward_features(x)
- return x
- def beit_base_patch16(pretrained=False, **kwargs):
- model = BEiT(
- patch_size=16,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=True,
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
- init_values=None,
- **kwargs)
- model.default_cfg = _cfg()
- return model
- def beit_large_patch16(pretrained=False, **kwargs):
- model = BEiT(
- patch_size=16,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- mlp_ratio=4,
- qkv_bias=True,
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
- init_values=None,
- **kwargs)
- model.default_cfg = _cfg()
- return model
- def dit_base_patch16(pretrained=False, **kwargs):
- model = BEiT(
- patch_size=16,
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4,
- qkv_bias=True,
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
- init_values=0.1,
- **kwargs)
- model.default_cfg = _cfg()
- return model
- def dit_large_patch16(pretrained=False, **kwargs):
- model = BEiT(
- patch_size=16,
- embed_dim=1024,
- depth=24,
- num_heads=16,
- mlp_ratio=4,
- qkv_bias=True,
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
- init_values=1e-5,
- **kwargs)
- model.default_cfg = _cfg()
- return model
- if __name__ == '__main__':
- model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True)
- model = model.to("cuda:0")
- input1 = torch.rand(2, 3, 512, 762).to("cuda:0")
- input2 = torch.rand(2, 3, 800, 1200).to("cuda:0")
- input3 = torch.rand(2, 3, 720, 1000).to("cuda:0")
- output1 = model(input1)
- output2 = model(input2)
- output3 = model(input3)
- print("all done")
|