| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- import time
- import copy
- import base64
- import cv2
- import numpy as np
- from io import BytesIO
- from PIL import Image
- from paddleocr import PaddleOCR
- from paddleocr.ppocr.utils.logging import get_logger
- from paddleocr.ppocr.utils.utility import check_and_read, alpha_to_color, binarize_img
- from paddleocr.tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image, get_minarea_rect_crop
- logger = get_logger()
- def img_decode(content: bytes):
- np_arr = np.frombuffer(content, dtype=np.uint8)
- return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
- def check_img(img):
- if isinstance(img, bytes):
- img = img_decode(img)
- if isinstance(img, str):
- image_file = img
- img, flag_gif, flag_pdf = check_and_read(image_file)
- if not flag_gif and not flag_pdf:
- with open(image_file, 'rb') as f:
- img_str = f.read()
- img = img_decode(img_str)
- if img is None:
- try:
- buf = BytesIO()
- image = BytesIO(img_str)
- im = Image.open(image)
- rgb = im.convert('RGB')
- rgb.save(buf, 'jpeg')
- buf.seek(0)
- image_bytes = buf.read()
- data_base64 = str(base64.b64encode(image_bytes),
- encoding="utf-8")
- image_decode = base64.b64decode(data_base64)
- img_array = np.frombuffer(image_decode, np.uint8)
- img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
- except:
- logger.error("error in loading image:{}".format(image_file))
- return None
- if img is None:
- logger.error("error in loading image:{}".format(image_file))
- return None
- if isinstance(img, np.ndarray) and len(img.shape) == 2:
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
- return img
- def sorted_boxes(dt_boxes):
- """
- Sort text boxes in order from top to bottom, left to right
- args:
- dt_boxes(array):detected text boxes with shape [4, 2]
- return:
- sorted boxes(array) with shape [4, 2]
- """
- num_boxes = dt_boxes.shape[0]
- sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
- _boxes = list(sorted_boxes)
- for i in range(num_boxes - 1):
- for j in range(i, -1, -1):
- if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
- (_boxes[j + 1][0][0] < _boxes[j][0][0]):
- tmp = _boxes[j]
- _boxes[j] = _boxes[j + 1]
- _boxes[j + 1] = tmp
- else:
- break
- return _boxes
- def formula_in_text(mf_bbox, text_bbox):
- x1, y1, x2, y2 = mf_bbox
- x3, y3 = text_bbox[0]
- x4, y4 = text_bbox[2]
- left_box, right_box = None, None
- same_line = abs((y1+y2)/2 - (y3+y4)/2) / abs(y4-y3) < 0.2
- if not same_line:
- return False, left_box, right_box
- else:
- drop_origin = False
- left_x = x1 - 1
- right_x = x2 + 1
- if x3 < x1 and x2 < x4:
- drop_origin = True
- left_box = np.array([text_bbox[0], [left_x, text_bbox[1][1]], [left_x, text_bbox[2][1]], text_bbox[3]]).astype('float32')
- right_box = np.array([[right_x, text_bbox[0][1]], text_bbox[1], text_bbox[2], [right_x, text_bbox[3][1]]]).astype('float32')
- if x3 < x1 and x1 <= x4 <= x2:
- drop_origin = True
- left_box = np.array([text_bbox[0], [left_x, text_bbox[1][1]], [left_x, text_bbox[2][1]], text_bbox[3]]).astype('float32')
- if x1 <= x3 <= x2 and x2 < x4:
- drop_origin = True
- right_box = np.array([[right_x, text_bbox[0][1]], text_bbox[1], text_bbox[2], [right_x, text_bbox[3][1]]]).astype('float32')
- if x1 <= x3 < x4 <= x2:
- drop_origin = True
- return drop_origin, left_box, right_box
-
- def update_det_boxes(dt_boxes, mfdetrec_res):
- new_dt_boxes = dt_boxes
- for mf_box in mfdetrec_res:
- flag, left_box, right_box = False, None, None
- for idx, text_box in enumerate(new_dt_boxes):
- ret, left_box, right_box = formula_in_text(mf_box['bbox'], text_box)
- if ret:
- new_dt_boxes.pop(idx)
- if left_box is not None:
- new_dt_boxes.append(left_box)
- if right_box is not None:
- new_dt_boxes.append(right_box)
- break
-
- return new_dt_boxes
- class ModifiedPaddleOCR(PaddleOCR):
- def ocr(self, img, det=True, rec=True, cls=True, bin=False, inv=False, mfd_res=None, alpha_color=(255, 255, 255)):
- """
- OCR with PaddleOCR
- args:
- img: img for OCR, support ndarray, img_path and list or ndarray
- det: use text detection or not. If False, only rec will be exec. Default is True
- rec: use text recognition or not. If False, only det will be exec. Default is True
- cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
- bin: binarize image to black and white. Default is False.
- inv: invert image colors. Default is False.
- alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
- """
- assert isinstance(img, (np.ndarray, list, str, bytes))
- if isinstance(img, list) and det == True:
- logger.error('When input a list of images, det must be false')
- exit(0)
- if cls == True and self.use_angle_cls == False:
- logger.warning(
- 'Since the angle classifier is not initialized, it will not be used during the forward process'
- )
- img = check_img(img)
- # for infer pdf file
- if isinstance(img, list):
- if self.page_num > len(img) or self.page_num == 0:
- self.page_num = len(img)
- imgs = img[:self.page_num]
- else:
- imgs = [img]
- def preprocess_image(_image):
- _image = alpha_to_color(_image, alpha_color)
- if inv:
- _image = cv2.bitwise_not(_image)
- if bin:
- _image = binarize_img(_image)
- return _image
- if det and rec:
- ocr_res = []
- for idx, img in enumerate(imgs):
- img = preprocess_image(img)
- dt_boxes, rec_res, _ = self.__call__(img, cls, mfd_res=mfd_res)
- if not dt_boxes and not rec_res:
- ocr_res.append(None)
- continue
- tmp_res = [[box.tolist(), res]
- for box, res in zip(dt_boxes, rec_res)]
- ocr_res.append(tmp_res)
- return ocr_res
- elif det and not rec:
- ocr_res = []
- for idx, img in enumerate(imgs):
- img = preprocess_image(img)
- dt_boxes, elapse = self.text_detector(img)
- if not dt_boxes:
- ocr_res.append(None)
- continue
- tmp_res = [box.tolist() for box in dt_boxes]
- ocr_res.append(tmp_res)
- return ocr_res
- else:
- ocr_res = []
- cls_res = []
- for idx, img in enumerate(imgs):
- if not isinstance(img, list):
- img = preprocess_image(img)
- img = [img]
- if self.use_angle_cls and cls:
- img, cls_res_tmp, elapse = self.text_classifier(img)
- if not rec:
- cls_res.append(cls_res_tmp)
- rec_res, elapse = self.text_recognizer(img)
- ocr_res.append(rec_res)
- if not rec:
- return cls_res
- return ocr_res
-
- def __call__(self, img, cls=True, mfd_res=None):
- time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
- if img is None:
- logger.debug("no valid image provided")
- return None, None, time_dict
- start = time.time()
- ori_im = img.copy()
- dt_boxes, elapse = self.text_detector(img)
- time_dict['det'] = elapse
- if dt_boxes is None:
- logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
- end = time.time()
- time_dict['all'] = end - start
- return None, None, time_dict
- else:
- logger.debug("dt_boxes num : {}, elapsed : {}".format(
- len(dt_boxes), elapse))
- img_crop_list = []
- dt_boxes = sorted_boxes(dt_boxes)
- if mfd_res:
- bef = time.time()
- dt_boxes = update_det_boxes(dt_boxes, mfd_res)
- aft = time.time()
- logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
- len(dt_boxes), aft-bef))
- for bno in range(len(dt_boxes)):
- tmp_box = copy.deepcopy(dt_boxes[bno])
- if self.args.det_box_type == "quad":
- img_crop = get_rotate_crop_image(ori_im, tmp_box)
- else:
- img_crop = get_minarea_rect_crop(ori_im, tmp_box)
- img_crop_list.append(img_crop)
- if self.use_angle_cls and cls:
- img_crop_list, angle_list, elapse = self.text_classifier(
- img_crop_list)
- time_dict['cls'] = elapse
- logger.debug("cls num : {}, elapsed : {}".format(
- len(img_crop_list), elapse))
- rec_res, elapse = self.text_recognizer(img_crop_list)
- time_dict['rec'] = elapse
- logger.debug("rec_res num : {}, elapsed : {}".format(
- len(rec_res), elapse))
- if self.args.save_crop_res:
- self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
- rec_res)
- filter_boxes, filter_rec_res = [], []
- for box, rec_result in zip(dt_boxes, rec_res):
- text, score = rec_result
- if score >= self.drop_score:
- filter_boxes.append(box)
- filter_rec_res.append(rec_result)
- end = time.time()
- time_dict['all'] = end - start
- return filter_boxes, filter_rec_res, time_dict
|