| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- 转换为 Markdown 文件
- ========================
- 本地文件示例
- ^^^^^^^^^^^^^^^^^^
- .. code:: python
- import os
- from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
- from magic_pdf.data.dataset import PymuDocDataset
- from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
- from magic_pdf.config.enums import SupportedPdfParseMethod
- # args
- pdf_file_name = "abc.pdf" # replace with the real pdf path
- name_without_suff = pdf_file_name.split(".")[0]
- # prepare env
- local_image_dir, local_md_dir = "output/images", "output"
- image_dir = str(os.path.basename(local_image_dir))
- os.makedirs(local_image_dir, exist_ok=True)
- image_writer, md_writer = FileBasedDataWriter(local_image_dir), FileBasedDataWriter(
- local_md_dir
- )
- image_dir = str(os.path.basename(local_image_dir))
- # read bytes
- reader1 = FileBasedDataReader("")
- pdf_bytes = reader1.read(pdf_file_name) # read the pdf content
- # proc
- ## Create Dataset Instance
- ds = PymuDocDataset(pdf_bytes)
- ## inference
- if ds.classify() == SupportedPdfParseMethod.OCR:
- infer_result = ds.apply(doc_analyze, ocr=True)
- ## pipeline
- pipe_result = infer_result.pipe_ocr_mode(image_writer)
- else:
- infer_result = ds.apply(doc_analyze, ocr=False)
- ## pipeline
- pipe_result = infer_result.pipe_txt_mode(image_writer)
- ### draw model result on each page
- infer_result.draw_model(os.path.join(local_md_dir, f"{name_without_suff}_model.pdf"))
- ### draw layout result on each page
- pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_suff}_layout.pdf"))
- ### draw spans result on each page
- pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_suff}_spans.pdf"))
- ### dump markdown
- pipe_result.dump_md(md_writer, f"{name_without_suff}.md", image_dir)
- ### dump content list
- pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir)
- 对象存储文件示例
- ^^^^^^^^^^^^^^^^
- .. code:: python
- import os
- from magic_pdf.data.data_reader_writer import S3DataReader, S3DataWriter
- from magic_pdf.data.dataset import PymuDocDataset
- from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
- bucket_name = "{Your S3 Bucket Name}" # replace with real bucket name
- ak = "{Your S3 access key}" # replace with real s3 access key
- sk = "{Your S3 secret key}" # replace with real s3 secret key
- endpoint_url = "{Your S3 endpoint_url}" # replace with real s3 endpoint_url
- reader = S3DataReader('unittest/tmp/', bucket_name, ak, sk, endpoint_url) # replace `unittest/tmp` with the real s3 prefix
- writer = S3DataWriter('unittest/tmp', bucket_name, ak, sk, endpoint_url)
- image_writer = S3DataWriter('unittest/tmp/images', bucket_name, ak, sk, endpoint_url)
- # args
- pdf_file_name = (
- "s3://llm-pdf-text-1/unittest/tmp/bug5-11.pdf" # replace with the real s3 path
- )
- # prepare env
- local_dir = "output"
- name_without_suff = os.path.basename(pdf_file_name).split(".")[0]
- # read bytes
- pdf_bytes = reader.read(pdf_file_name) # read the pdf content
- # proc
- ## Create Dataset Instance
- ds = PymuDocDataset(pdf_bytes)
- ## inference
- if ds.classify() == SupportedPdfParseMethod.OCR:
- infer_result = ds.apply(doc_analyze, ocr=True)
- ## pipeline
- pipe_result = infer_result.pipe_ocr_mode(image_writer)
- else:
- infer_result = ds.apply(doc_analyze, ocr=False)
- ## pipeline
- pipe_result = infer_result.pipe_txt_mode(image_writer)
- ### draw model result on each page
- infer_result.draw_model(os.path.join(local_dir, f'{name_without_suff}_model.pdf')) # dump to local
- ### draw layout result on each page
- pipe_result.draw_layout(os.path.join(local_dir, f'{name_without_suff}_layout.pdf')) # dump to local
- ### draw spans result on each page
- pipe_result.draw_span(os.path.join(local_dir, f'{name_without_suff}_spans.pdf')) # dump to local
- ### dump markdown
- pipe_result.dump_md(writer, f'{name_without_suff}.md', "unittest/tmp/images") # dump to remote s3
- ### dump content list
- pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir)
- 前去 :doc:`../data/data_reader_writer` 获取更多有关 **读写** 示例
|