app.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. import json
  2. import os
  3. from base64 import b64encode
  4. from glob import glob
  5. from io import StringIO
  6. import tempfile
  7. from typing import Tuple, Union
  8. import uvicorn
  9. from fastapi import FastAPI, HTTPException, UploadFile
  10. from fastapi.responses import JSONResponse
  11. from loguru import logger
  12. from magic_pdf.data.read_api import read_local_images, read_local_office
  13. import magic_pdf.model as model_config
  14. from magic_pdf.config.enums import SupportedPdfParseMethod
  15. from magic_pdf.data.data_reader_writer import DataWriter, FileBasedDataWriter
  16. from magic_pdf.data.data_reader_writer.s3 import S3DataReader, S3DataWriter
  17. from magic_pdf.data.dataset import ImageDataset, PymuDocDataset
  18. from magic_pdf.libs.config_reader import get_bucket_name, get_s3_config
  19. from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
  20. from magic_pdf.operators.models import InferenceResult
  21. from magic_pdf.operators.pipes import PipeResult
  22. model_config.__use_inside_model__ = True
  23. app = FastAPI()
  24. pdf_extensions = [".pdf"]
  25. office_extensions = [".ppt", ".pptx", ".doc", ".docx"]
  26. image_extensions = [".png", ".jpg"]
  27. class MemoryDataWriter(DataWriter):
  28. def __init__(self):
  29. self.buffer = StringIO()
  30. def write(self, path: str, data: bytes) -> None:
  31. if isinstance(data, str):
  32. self.buffer.write(data)
  33. else:
  34. self.buffer.write(data.decode("utf-8"))
  35. def write_string(self, path: str, data: str) -> None:
  36. self.buffer.write(data)
  37. def get_value(self) -> str:
  38. return self.buffer.getvalue()
  39. def close(self):
  40. self.buffer.close()
  41. def init_writers(
  42. file_path: str = None,
  43. file: UploadFile = None,
  44. output_path: str = None,
  45. output_image_path: str = None,
  46. ) -> Tuple[
  47. Union[S3DataWriter, FileBasedDataWriter],
  48. Union[S3DataWriter, FileBasedDataWriter],
  49. bytes,
  50. ]:
  51. """
  52. Initialize writers based on path type
  53. Args:
  54. file_path: file path (local path or S3 path)
  55. file: Uploaded file object
  56. output_path: Output directory path
  57. output_image_path: Image output directory path
  58. Returns:
  59. Tuple[writer, image_writer, file_bytes]: Returns initialized writer tuple and file content
  60. """
  61. file_extension:str = None
  62. if file_path:
  63. is_s3_path = file_path.startswith("s3://")
  64. if is_s3_path:
  65. bucket = get_bucket_name(file_path)
  66. ak, sk, endpoint = get_s3_config(bucket)
  67. writer = S3DataWriter(
  68. output_path, bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
  69. )
  70. image_writer = S3DataWriter(
  71. output_image_path, bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
  72. )
  73. # 临时创建reader读取文件内容
  74. temp_reader = S3DataReader(
  75. "", bucket=bucket, ak=ak, sk=sk, endpoint_url=endpoint
  76. )
  77. file_bytes = temp_reader.read(file_path)
  78. file_extension = os.path.splitext(file_path)[1]
  79. else:
  80. writer = FileBasedDataWriter(output_path)
  81. image_writer = FileBasedDataWriter(output_image_path)
  82. os.makedirs(output_image_path, exist_ok=True)
  83. with open(file_path, "rb") as f:
  84. file_bytes = f.read()
  85. file_extension = os.path.splitext(file_path)[1]
  86. else:
  87. # 处理上传的文件
  88. file_bytes = file.file.read()
  89. file_extension = os.path.splitext(file.filename)[1]
  90. writer = FileBasedDataWriter(output_path)
  91. image_writer = FileBasedDataWriter(output_image_path)
  92. os.makedirs(output_image_path, exist_ok=True)
  93. return writer, image_writer, file_bytes, file_extension
  94. def process_file(
  95. file_bytes: bytes,
  96. file_extension: str,
  97. parse_method: str,
  98. image_writer: Union[S3DataWriter, FileBasedDataWriter],
  99. ) -> Tuple[InferenceResult, PipeResult]:
  100. """
  101. Process PDF file content
  102. Args:
  103. file_bytes: Binary content of file
  104. file_extension: file extension
  105. parse_method: Parse method ('ocr', 'txt', 'auto')
  106. image_writer: Image writer
  107. Returns:
  108. Tuple[InferenceResult, PipeResult]: Returns inference result and pipeline result
  109. """
  110. ds = Union[PymuDocDataset, ImageDataset]
  111. if file_extension in pdf_extensions:
  112. ds = PymuDocDataset(file_bytes)
  113. elif file_extension in office_extensions:
  114. # 需要使用office解析
  115. temp_dir = tempfile.mkdtemp()
  116. with open(os.path.join(temp_dir, f"temp_file.{file_extension}"), "wb") as f:
  117. f.write(file_bytes)
  118. ds = read_local_office(temp_dir)[0]
  119. elif file_extension in image_extensions:
  120. # 需要使用ocr解析
  121. temp_dir = tempfile.mkdtemp()
  122. with open(os.path.join(temp_dir, f"temp_file.{file_extension}"), "wb") as f:
  123. f.write(file_bytes)
  124. ds = read_local_images(temp_dir)[0]
  125. infer_result: InferenceResult = None
  126. pipe_result: PipeResult = None
  127. if parse_method == "ocr":
  128. infer_result = ds.apply(doc_analyze, ocr=True)
  129. pipe_result = infer_result.pipe_ocr_mode(image_writer)
  130. elif parse_method == "txt":
  131. infer_result = ds.apply(doc_analyze, ocr=False)
  132. pipe_result = infer_result.pipe_txt_mode(image_writer)
  133. else: # auto
  134. if ds.classify() == SupportedPdfParseMethod.OCR:
  135. infer_result = ds.apply(doc_analyze, ocr=True)
  136. pipe_result = infer_result.pipe_ocr_mode(image_writer)
  137. else:
  138. infer_result = ds.apply(doc_analyze, ocr=False)
  139. pipe_result = infer_result.pipe_txt_mode(image_writer)
  140. return infer_result, pipe_result
  141. def encode_image(image_path: str) -> str:
  142. """Encode image using base64"""
  143. with open(image_path, "rb") as f:
  144. return b64encode(f.read()).decode()
  145. @app.post(
  146. "/file_parse",
  147. tags=["projects"],
  148. summary="Parse files (supports local files and S3)",
  149. )
  150. async def file_parse(
  151. file: UploadFile = None,
  152. file_path: str = None,
  153. parse_method: str = "auto",
  154. is_json_md_dump: bool = False,
  155. output_dir: str = "output",
  156. return_layout: bool = False,
  157. return_info: bool = False,
  158. return_content_list: bool = False,
  159. return_images: bool = False,
  160. ):
  161. """
  162. Execute the process of converting PDF to JSON and MD, outputting MD and JSON files
  163. to the specified directory.
  164. Args:
  165. file: The PDF file to be parsed. Must not be specified together with
  166. `file_path`
  167. file_path: The path to the PDF file to be parsed. Must not be specified together
  168. with `file`
  169. parse_method: Parsing method, can be auto, ocr, or txt. Default is auto. If
  170. results are not satisfactory, try ocr
  171. is_json_md_dump: Whether to write parsed data to .json and .md files. Default
  172. to False. Different stages of data will be written to different .json files
  173. (3 in total), md content will be saved to .md file
  174. output_dir: Output directory for results. A folder named after the PDF file
  175. will be created to store all results
  176. return_layout: Whether to return parsed PDF layout. Default to False
  177. return_info: Whether to return parsed PDF info. Default to False
  178. return_content_list: Whether to return parsed PDF content list. Default to False
  179. """
  180. try:
  181. if (file is None and file_path is None) or (
  182. file is not None and file_path is not None
  183. ):
  184. return JSONResponse(
  185. content={"error": "Must provide either file or file_path"},
  186. status_code=400,
  187. )
  188. # Get PDF filename
  189. file_name = os.path.basename(file_path if file_path else file.filename).split(
  190. "."
  191. )[0]
  192. output_path = f"{output_dir}/{file_name}"
  193. output_image_path = f"{output_path}/images"
  194. # Initialize readers/writers and get PDF content
  195. writer, image_writer, file_bytes, file_extension = init_writers(
  196. file_path=file_path,
  197. file=file,
  198. output_path=output_path,
  199. output_image_path=output_image_path,
  200. )
  201. # Process PDF
  202. infer_result, pipe_result = process_file(file_bytes, file_extension, parse_method, image_writer)
  203. # Use MemoryDataWriter to get results
  204. content_list_writer = MemoryDataWriter()
  205. md_content_writer = MemoryDataWriter()
  206. middle_json_writer = MemoryDataWriter()
  207. # Use PipeResult's dump method to get data
  208. pipe_result.dump_content_list(content_list_writer, "", "images")
  209. pipe_result.dump_md(md_content_writer, "", "images")
  210. pipe_result.dump_middle_json(middle_json_writer, "")
  211. # Get content
  212. content_list = json.loads(content_list_writer.get_value())
  213. md_content = md_content_writer.get_value()
  214. middle_json = json.loads(middle_json_writer.get_value())
  215. model_json = infer_result.get_infer_res()
  216. # If results need to be saved
  217. if is_json_md_dump:
  218. writer.write_string(
  219. f"{file_name}_content_list.json", content_list_writer.get_value()
  220. )
  221. writer.write_string(f"{file_name}.md", md_content)
  222. writer.write_string(
  223. f"{file_name}_middle.json", middle_json_writer.get_value()
  224. )
  225. writer.write_string(
  226. f"{file_name}_model.json",
  227. json.dumps(model_json, indent=4, ensure_ascii=False),
  228. )
  229. # Save visualization results
  230. pipe_result.draw_layout(os.path.join(output_path, f"{file_name}_layout.pdf"))
  231. pipe_result.draw_span(os.path.join(output_path, f"{file_name}_spans.pdf"))
  232. pipe_result.draw_line_sort(
  233. os.path.join(output_path, f"{file_name}_line_sort.pdf")
  234. )
  235. infer_result.draw_model(os.path.join(output_path, f"{file_name}_model.pdf"))
  236. # Build return data
  237. data = {}
  238. if return_layout:
  239. data["layout"] = model_json
  240. if return_info:
  241. data["info"] = middle_json
  242. if return_content_list:
  243. data["content_list"] = content_list
  244. if return_images:
  245. image_paths = glob(f"{output_image_path}/*.jpg")
  246. data["images"] = {
  247. os.path.basename(
  248. image_path
  249. ): f"data:image/jpeg;base64,{encode_image(image_path)}"
  250. for image_path in image_paths
  251. }
  252. data["md_content"] = md_content # md_content is always returned
  253. # Clean up memory writers
  254. content_list_writer.close()
  255. md_content_writer.close()
  256. middle_json_writer.close()
  257. return JSONResponse(data, status_code=200)
  258. except Exception as e:
  259. logger.exception(e)
  260. return JSONResponse(content={"error": str(e)}, status_code=500)
  261. if __name__ == "__main__":
  262. uvicorn.run(app, host="0.0.0.0", port=8888)