| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- import html
- import cv2
- from loguru import logger
- from tqdm import tqdm
- from collections import defaultdict
- import numpy as np
- from .model_init import AtomModelSingleton
- from .model_list import AtomicModel
- from ...utils.config_reader import get_formula_enable, get_table_enable
- from ...utils.model_utils import crop_img, get_res_list_from_layout_res, clean_vram
- from ...utils.ocr_utils import merge_det_boxes, update_det_boxes, sorted_boxes
- from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence, get_rotate_crop_image
- from ...utils.pdf_image_tools import get_crop_np_img
- YOLO_LAYOUT_BASE_BATCH_SIZE = 1
- MFD_BASE_BATCH_SIZE = 1
- MFR_BASE_BATCH_SIZE = 16
- OCR_DET_BASE_BATCH_SIZE = 16
- TABLE_ORI_CLS_BATCH_SIZE = 16
- TABLE_Wired_Wireless_CLS_BATCH_SIZE = 16
- class BatchAnalyze:
- def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
- self.batch_ratio = batch_ratio
- self.formula_enable = get_formula_enable(formula_enable)
- self.table_enable = get_table_enable(table_enable)
- self.model_manager = model_manager
- self.enable_ocr_det_batch = enable_ocr_det_batch
- def __call__(self, images_with_extra_info: list) -> list:
- if len(images_with_extra_info) == 0:
- return []
- images_layout_res = []
- self.model = self.model_manager.get_model(
- lang=None,
- formula_enable=self.formula_enable,
- table_enable=self.table_enable,
- )
- atom_model_manager = AtomModelSingleton()
- pil_images = [image for image, _, _ in images_with_extra_info]
- np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
- # doclayout_yolo
- images_layout_res += self.model.layout_model.batch_predict(
- pil_images, YOLO_LAYOUT_BASE_BATCH_SIZE
- )
- if self.formula_enable:
- # 公式检测
- images_mfd_res = self.model.mfd_model.batch_predict(
- np_images, MFD_BASE_BATCH_SIZE
- )
- # 公式识别
- images_formula_list = self.model.mfr_model.batch_predict(
- images_mfd_res,
- np_images,
- batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
- )
- mfr_count = 0
- for image_index in range(len(np_images)):
- images_layout_res[image_index] += images_formula_list[image_index]
- mfr_count += len(images_formula_list[image_index])
- # 清理显存
- clean_vram(self.model.device, vram_threshold=8)
- ocr_res_list_all_page = []
- table_res_list_all_page = []
- for index in range(len(np_images)):
- _, ocr_enable, _lang = images_with_extra_info[index]
- layout_res = images_layout_res[index]
- np_img = np_images[index]
- ocr_res_list, table_res_list, single_page_mfdetrec_res = (
- get_res_list_from_layout_res(layout_res)
- )
- ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
- 'lang':_lang,
- 'ocr_enable':ocr_enable,
- 'np_img':np_img,
- 'single_page_mfdetrec_res':single_page_mfdetrec_res,
- 'layout_res':layout_res,
- })
- for table_res in table_res_list:
- # table_img, _ = crop_img(table_res, pil_img)
- # bbox = (241, 208, 1475, 2019)
- scale = 10/3
- # scale = 1
- crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
- crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
- bbox = (int(crop_xmin/scale), int(crop_ymin/scale), int(crop_xmax/scale), int(crop_ymax/scale))
- table_img = get_crop_np_img(bbox, np_img, scale=scale)
- table_res_list_all_page.append({'table_res':table_res,
- 'lang':_lang,
- 'table_img':table_img,
- })
- # 表格识别 table recognition
- if self.table_enable:
- # 图片旋转批量处理
- img_orientation_cls_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.ImgOrientationCls,
- )
- try:
- img_orientation_cls_model.batch_predict(table_res_list_all_page,
- det_batch_size=self.batch_ratio * OCR_DET_BASE_BATCH_SIZE,
- batch_size=TABLE_ORI_CLS_BATCH_SIZE)
- except Exception as e:
- logger.warning(
- f"Image orientation classification failed: {e}, using original image"
- )
- # 表格分类
- table_cls_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.TableCls,
- )
- try:
- table_cls_model.batch_predict(table_res_list_all_page,
- batch_size=TABLE_Wired_Wireless_CLS_BATCH_SIZE)
- except Exception as e:
- logger.warning(
- f"Table classification failed: {e}, using default model"
- )
- # OCR det 过程,顺序执行
- rec_img_lang_group = defaultdict(list)
- for index, table_res_dict in enumerate(
- tqdm(table_res_list_all_page, desc="Table-ocr det")
- ):
- ocr_engine = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.OCR,
- det_db_box_thresh=0.5,
- det_db_unclip_ratio=1.6,
- # lang= table_res_dict["lang"],
- enable_merge_det_boxes=False,
- )
- bgr_image = cv2.cvtColor(table_res_dict["table_img"], cv2.COLOR_RGB2BGR)
- ocr_result = ocr_engine.ocr(bgr_image, rec=False)[0]
- # 构造需要 OCR 识别的图片字典,包括cropped_img, dt_box, table_id,并按照语言进行分组
- for dt_box in ocr_result:
- rec_img_lang_group[_lang].append(
- {
- "cropped_img": get_rotate_crop_image(
- bgr_image, np.asarray(dt_box, dtype=np.float32)
- ),
- "dt_box": np.asarray(dt_box, dtype=np.float32),
- "table_id": index,
- }
- )
- # OCR rec,按照语言分批处理
- for _lang, rec_img_list in rec_img_lang_group.items():
- ocr_engine = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.OCR,
- det_db_box_thresh=0.5,
- det_db_unclip_ratio=1.6,
- lang=_lang,
- enable_merge_det_boxes=False,
- )
- cropped_img_list = [item["cropped_img"] for item in rec_img_list]
- ocr_res_list = ocr_engine.ocr(cropped_img_list, det=False, tqdm_enable=True, tqdm_desc=f"Table-ocr rec {_lang}")[0]
- # 按照 table_id 将识别结果进行回填
- for img_dict, ocr_res in zip(rec_img_list, ocr_res_list):
- if table_res_list_all_page[img_dict["table_id"]].get("ocr_result"):
- table_res_list_all_page[img_dict["table_id"]]["ocr_result"].append(
- [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
- )
- else:
- table_res_list_all_page[img_dict["table_id"]]["ocr_result"] = [
- [img_dict["dt_box"], html.escape(ocr_res[0]), ocr_res[1]]
- ]
- clean_vram(self.model.device, vram_threshold=8)
- # 先对所有表格使用无线表格模型,然后对分类为有线的表格使用有线表格模型
- wireless_table_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.WirelessTable,
- )
- wireless_table_model.batch_predict(table_res_list_all_page)
- # for table_res_dict in tqdm(table_res_list_all_page, desc="Table-wireless Predict"):
- # if not table_res_dict.get("ocr_result", None):
- # continue
- # html_code, table_cell_bboxes, logic_points, elapse = wireless_table_model.predict(
- # table_res_dict["table_img"], table_res_dict["ocr_result"]
- # )
- # if html_code:
- # table_res_dict["table_res"]["html"] = html_code
- # 单独拿出有线表格进行预测
- wired_table_res_list = []
- for table_res_dict in table_res_list_all_page:
- if table_res_dict["table_res"]["cls_label"] == AtomicModel.WiredTable:
- wired_table_res_list.append(table_res_dict)
- if wired_table_res_list:
- for table_res_dict in tqdm(
- wired_table_res_list, desc="Table-wired Predict"
- ):
- if not table_res_dict.get("ocr_result", None):
- continue
- wired_table_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.WiredTable,
- lang=table_res_dict["lang"],
- )
- table_res_dict["table_res"]["html"] = wired_table_model.predict(
- table_res_dict["table_img"],
- table_res_dict["ocr_result"],
- table_res_dict["table_res"].get("html", None)
- )
- # 表格格式清理
- for table_res_dict in table_res_list_all_page:
- html_code = table_res_dict["table_res"].get("html", "")
- # 检查html_code是否包含'<table>'和'</table>'
- if "<table>" in html_code and "</table>" in html_code:
- # 选用<table>到</table>的内容,放入table_res_dict['table_res']['html']
- start_index = html_code.find("<table>")
- end_index = html_code.rfind("</table>") + len("</table>")
- table_res_dict["table_res"]["html"] = html_code[start_index:end_index]
- # OCR det
- if self.enable_ocr_det_batch:
- # 批处理模式 - 按语言和分辨率分组
- # 收集所有需要OCR检测的裁剪图像
- all_cropped_images_info = []
- for ocr_res_list_dict in ocr_res_list_all_page:
- _lang = ocr_res_list_dict['lang']
- for res in ocr_res_list_dict['ocr_res_list']:
- new_image, useful_list = crop_img(
- res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
- )
- adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
- ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
- )
- # BGR转换
- bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
- all_cropped_images_info.append((
- bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang
- ))
- # 按语言分组
- lang_groups = defaultdict(list)
- for crop_info in all_cropped_images_info:
- lang = crop_info[5]
- lang_groups[lang].append(crop_info)
- # 对每种语言按分辨率分组并批处理
- for lang, lang_crop_list in lang_groups.items():
- if not lang_crop_list:
- continue
- # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
- # 获取OCR模型
- ocr_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.OCR,
- det_db_box_thresh=0.3,
- lang=lang
- )
- # 按分辨率分组并同时完成padding
- # RESOLUTION_GROUP_STRIDE = 32
- RESOLUTION_GROUP_STRIDE = 64 # 定义分辨率分组的步进值
- resolution_groups = defaultdict(list)
- for crop_info in lang_crop_list:
- cropped_img = crop_info[0]
- h, w = cropped_img.shape[:2]
- # 使用更大的分组容差,减少分组数量
- # 将尺寸标准化到32的倍数
- normalized_h = ((h + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE # 向上取整到32的倍数
- normalized_w = ((w + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
- group_key = (normalized_h, normalized_w)
- resolution_groups[group_key].append(crop_info)
- # 对每个分辨率组进行批处理
- for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
- # 计算目标尺寸(组内最大尺寸,向上取整到32的倍数)
- max_h = max(crop_info[0].shape[0] for crop_info in group_crops)
- max_w = max(crop_info[0].shape[1] for crop_info in group_crops)
- target_h = ((max_h + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
- target_w = ((max_w + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
- # 对所有图像进行padding到统一尺寸
- batch_images = []
- for crop_info in group_crops:
- img = crop_info[0]
- h, w = img.shape[:2]
- # 创建目标尺寸的白色背景
- padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
- # 将原图像粘贴到左上角
- padded_img[:h, :w] = img
- batch_images.append(padded_img)
- # 批处理检测
- det_batch_size = min(len(batch_images), self.batch_ratio * OCR_DET_BASE_BATCH_SIZE) # 增加批处理大小
- # logger.debug(f"OCR-det batch: {det_batch_size} images, target size: {target_h}x{target_w}")
- batch_results = ocr_model.text_detector.batch_predict(batch_images, det_batch_size)
- # 处理批处理结果
- for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)):
- bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
- if dt_boxes is not None and len(dt_boxes) > 0:
- # 直接应用原始OCR流程中的关键处理步骤
- # 1. 排序检测框
- if len(dt_boxes) > 0:
- dt_boxes_sorted = sorted_boxes(dt_boxes)
- else:
- dt_boxes_sorted = []
- # 2. 合并相邻检测框
- if dt_boxes_sorted:
- dt_boxes_merged = merge_det_boxes(dt_boxes_sorted)
- else:
- dt_boxes_merged = []
- # 3. 根据公式位置更新检测框(关键步骤!)
- if dt_boxes_merged and adjusted_mfdetrec_res:
- dt_boxes_final = update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
- else:
- dt_boxes_final = dt_boxes_merged
- # 构造OCR结果格式
- ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
- if ocr_res:
- ocr_result_list = get_ocr_result_list(
- ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], bgr_image, _lang
- )
- ocr_res_list_dict['layout_res'].extend(ocr_result_list)
- else:
- # 原始单张处理模式
- for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
- # Process each area that requires OCR processing
- _lang = ocr_res_list_dict['lang']
- # Get OCR results for this language's images
- ocr_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.OCR,
- ocr_show_log=False,
- det_db_box_thresh=0.3,
- lang=_lang
- )
- for res in ocr_res_list_dict['ocr_res_list']:
- new_image, useful_list = crop_img(
- res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
- )
- adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
- ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
- )
- # OCR-det
- bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
- ocr_res = ocr_model.ocr(
- bgr_image, mfd_res=adjusted_mfdetrec_res, rec=False
- )[0]
- # Integration results
- if ocr_res:
- ocr_result_list = get_ocr_result_list(
- ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],bgr_image, _lang
- )
- ocr_res_list_dict['layout_res'].extend(ocr_result_list)
- # OCR rec
- # Create dictionaries to store items by language
- need_ocr_lists_by_lang = {} # Dict of lists for each language
- img_crop_lists_by_lang = {} # Dict of lists for each language
- for layout_res in images_layout_res:
- for layout_res_item in layout_res:
- if layout_res_item['category_id'] in [15]:
- if 'np_img' in layout_res_item and 'lang' in layout_res_item:
- lang = layout_res_item['lang']
- # Initialize lists for this language if not exist
- if lang not in need_ocr_lists_by_lang:
- need_ocr_lists_by_lang[lang] = []
- img_crop_lists_by_lang[lang] = []
- # Add to the appropriate language-specific lists
- need_ocr_lists_by_lang[lang].append(layout_res_item)
- img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
- # Remove the fields after adding to lists
- layout_res_item.pop('np_img')
- layout_res_item.pop('lang')
- if len(img_crop_lists_by_lang) > 0:
- # Process OCR by language
- total_processed = 0
- # Process each language separately
- for lang, img_crop_list in img_crop_lists_by_lang.items():
- if len(img_crop_list) > 0:
- # Get OCR results for this language's images
- ocr_model = atom_model_manager.get_atom_model(
- atom_model_name=AtomicModel.OCR,
- det_db_box_thresh=0.3,
- lang=lang
- )
- ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
- # Verify we have matching counts
- assert len(ocr_res_list) == len(
- need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
- # Process OCR results for this language
- for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
- ocr_text, ocr_score = ocr_res_list[index]
- layout_res_item['text'] = ocr_text
- layout_res_item['score'] = float(f"{ocr_score:.3f}")
- if ocr_score < OcrConfidence.min_confidence:
- layout_res_item['category_id'] = 16
- else:
- layout_res_bbox = [layout_res_item['poly'][0], layout_res_item['poly'][1],
- layout_res_item['poly'][4], layout_res_item['poly'][5]]
- layout_res_width = layout_res_bbox[2] - layout_res_bbox[0]
- layout_res_height = layout_res_bbox[3] - layout_res_bbox[1]
- if ocr_text in ['(204号', '(20', '(2', '(2号', '(20号'] and ocr_score < 0.8 and layout_res_width < layout_res_height:
- layout_res_item['category_id'] = 16
- total_processed += len(img_crop_list)
- return images_layout_res
|