vlm_analyze.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import os
  3. import time
  4. from loguru import logger
  5. from .utils import enable_custom_logits_processors, set_default_gpu_memory_utilization, set_default_batch_size
  6. from .model_output_to_middle_json import result_to_middle_json
  7. from ...data.data_reader_writer import DataWriter
  8. from mineru.utils.pdf_image_tools import load_images_from_pdf
  9. from ...utils.config_reader import get_device
  10. from ...utils.enum_class import ImageType
  11. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  12. from mineru_vl_utils import MinerUClient
  13. from packaging import version
  14. class ModelSingleton:
  15. _instance = None
  16. _models = {}
  17. def __new__(cls, *args, **kwargs):
  18. if cls._instance is None:
  19. cls._instance = super().__new__(cls)
  20. return cls._instance
  21. def get_model(
  22. self,
  23. backend: str,
  24. model_path: str | None,
  25. server_url: str | None,
  26. **kwargs,
  27. ) -> MinerUClient:
  28. key = (backend, model_path, server_url)
  29. if key not in self._models:
  30. start_time = time.time()
  31. model = None
  32. processor = None
  33. vllm_llm = None
  34. vllm_async_llm = None
  35. batch_size = kwargs.get("batch_size", 0) # for transformers backend only
  36. max_concurrency = kwargs.get("max_concurrency", 100) # for http-client backend only
  37. http_timeout = kwargs.get("http_timeout", 600) # for http-client backend only
  38. # 从kwargs中移除这些参数,避免传递给不相关的初始化函数
  39. for param in ["batch_size", "max_concurrency", "http_timeout"]:
  40. if param in kwargs:
  41. del kwargs[param]
  42. if backend in ['transformers', 'vllm-engine', "vllm-async-engine", "mlx-engine"] and not model_path:
  43. model_path = auto_download_and_get_model_root_path("/","vlm")
  44. if backend == "transformers":
  45. try:
  46. from transformers import (
  47. AutoProcessor,
  48. Qwen2VLForConditionalGeneration,
  49. )
  50. from transformers import __version__ as transformers_version
  51. except ImportError:
  52. raise ImportError("Please install transformers to use the transformers backend.")
  53. if version.parse(transformers_version) >= version.parse("4.56.0"):
  54. dtype_key = "dtype"
  55. else:
  56. dtype_key = "torch_dtype"
  57. device = get_device()
  58. model = Qwen2VLForConditionalGeneration.from_pretrained(
  59. model_path,
  60. device_map={"": device},
  61. **{dtype_key: "auto"}, # type: ignore
  62. )
  63. processor = AutoProcessor.from_pretrained(
  64. model_path,
  65. use_fast=True,
  66. )
  67. if batch_size == 0:
  68. batch_size = set_default_batch_size()
  69. elif backend == "mlx-engine":
  70. try:
  71. from mlx_vlm import load as mlx_load
  72. except ImportError:
  73. raise ImportError("Please install mlx-vlm to use the mlx-engine backend.")
  74. model, processor = mlx_load(model_path)
  75. else:
  76. if os.getenv('OMP_NUM_THREADS') is None:
  77. os.environ["OMP_NUM_THREADS"] = "1"
  78. if backend == "vllm-engine":
  79. try:
  80. import vllm
  81. from mineru_vl_utils import MinerULogitsProcessor
  82. except ImportError:
  83. raise ImportError("Please install vllm to use the vllm-engine backend.")
  84. if "gpu_memory_utilization" not in kwargs:
  85. kwargs["gpu_memory_utilization"] = set_default_gpu_memory_utilization()
  86. if "model" not in kwargs:
  87. kwargs["model"] = model_path
  88. if enable_custom_logits_processors() and ("logits_processors" not in kwargs):
  89. kwargs["logits_processors"] = [MinerULogitsProcessor]
  90. # 使用kwargs为 vllm初始化参数
  91. vllm_llm = vllm.LLM(**kwargs)
  92. elif backend == "vllm-async-engine":
  93. try:
  94. from vllm.engine.arg_utils import AsyncEngineArgs
  95. from vllm.v1.engine.async_llm import AsyncLLM
  96. from mineru_vl_utils import MinerULogitsProcessor
  97. except ImportError:
  98. raise ImportError("Please install vllm to use the vllm-async-engine backend.")
  99. if "gpu_memory_utilization" not in kwargs:
  100. kwargs["gpu_memory_utilization"] = set_default_gpu_memory_utilization()
  101. if "model" not in kwargs:
  102. kwargs["model"] = model_path
  103. if enable_custom_logits_processors() and ("logits_processors" not in kwargs):
  104. kwargs["logits_processors"] = [MinerULogitsProcessor]
  105. # 使用kwargs为 vllm初始化参数
  106. vllm_async_llm = AsyncLLM.from_engine_args(AsyncEngineArgs(**kwargs))
  107. self._models[key] = MinerUClient(
  108. backend=backend,
  109. model=model,
  110. processor=processor,
  111. vllm_llm=vllm_llm,
  112. vllm_async_llm=vllm_async_llm,
  113. server_url=server_url,
  114. batch_size=batch_size,
  115. max_concurrency=max_concurrency,
  116. http_timeout=http_timeout,
  117. )
  118. elapsed = round(time.time() - start_time, 2)
  119. logger.info(f"get {backend} predictor cost: {elapsed}s")
  120. return self._models[key]
  121. def doc_analyze(
  122. pdf_bytes,
  123. image_writer: DataWriter | None,
  124. predictor: MinerUClient | None = None,
  125. backend="transformers",
  126. model_path: str | None = None,
  127. server_url: str | None = None,
  128. **kwargs,
  129. ):
  130. if predictor is None:
  131. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  132. # load_images_start = time.time()
  133. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  134. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  135. # load_images_time = round(time.time() - load_images_start, 2)
  136. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  137. # infer_start = time.time()
  138. results = predictor.batch_two_step_extract(images=images_pil_list)
  139. # infer_time = round(time.time() - infer_start, 2)
  140. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  141. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  142. return middle_json, results
  143. async def aio_doc_analyze(
  144. pdf_bytes,
  145. image_writer: DataWriter | None,
  146. predictor: MinerUClient | None = None,
  147. backend="transformers",
  148. model_path: str | None = None,
  149. server_url: str | None = None,
  150. **kwargs,
  151. ):
  152. if predictor is None:
  153. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  154. # load_images_start = time.time()
  155. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  156. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  157. # load_images_time = round(time.time() - load_images_start, 2)
  158. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  159. # infer_start = time.time()
  160. results = await predictor.aio_batch_two_step_extract(images=images_pil_list)
  161. # infer_time = round(time.time() - infer_start, 2)
  162. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  163. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  164. return middle_json, results