batch_analyze.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. import cv2
  2. from loguru import logger
  3. from tqdm import tqdm
  4. from collections import defaultdict
  5. import numpy as np
  6. from .model_init import AtomModelSingleton
  7. from .model_list import AtomicModel
  8. from ...utils.config_reader import get_formula_enable, get_table_enable
  9. from ...utils.model_utils import crop_img, get_res_list_from_layout_res
  10. from ...utils.ocr_utils import get_adjusted_mfdetrec_res, get_ocr_result_list, OcrConfidence
  11. from ...utils.pdf_image_tools import get_crop_np_img
  12. YOLO_LAYOUT_BASE_BATCH_SIZE = 1
  13. MFD_BASE_BATCH_SIZE = 1
  14. MFR_BASE_BATCH_SIZE = 16
  15. OCR_DET_BASE_BATCH_SIZE = 16
  16. class BatchAnalyze:
  17. def __init__(self, model_manager, batch_ratio: int, formula_enable, table_enable, enable_ocr_det_batch: bool = True):
  18. self.batch_ratio = batch_ratio
  19. self.formula_enable = get_formula_enable(formula_enable)
  20. self.table_enable = get_table_enable(table_enable)
  21. self.model_manager = model_manager
  22. self.enable_ocr_det_batch = enable_ocr_det_batch
  23. def __call__(self, images_with_extra_info: list) -> list:
  24. if len(images_with_extra_info) == 0:
  25. return []
  26. images_layout_res = []
  27. self.model = self.model_manager.get_model(
  28. lang=None,
  29. formula_enable=self.formula_enable,
  30. table_enable=self.table_enable,
  31. )
  32. atom_model_manager = AtomModelSingleton()
  33. np_images = [np.asarray(image) for image, _, _ in images_with_extra_info]
  34. # doclayout_yolo
  35. images_layout_res += self.model.layout_model.batch_predict(
  36. np_images, YOLO_LAYOUT_BASE_BATCH_SIZE
  37. )
  38. if self.formula_enable:
  39. # 公式检测
  40. images_mfd_res = self.model.mfd_model.batch_predict(
  41. np_images, MFD_BASE_BATCH_SIZE
  42. )
  43. # 公式识别
  44. images_formula_list = self.model.mfr_model.batch_predict(
  45. images_mfd_res,
  46. np_images,
  47. batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
  48. )
  49. mfr_count = 0
  50. for image_index in range(len(np_images)):
  51. images_layout_res[image_index] += images_formula_list[image_index]
  52. mfr_count += len(images_formula_list[image_index])
  53. # 清理显存
  54. # clean_vram(self.model.device, vram_threshold=8)
  55. ocr_res_list_all_page = []
  56. table_res_list_all_page = []
  57. for index in range(len(np_images)):
  58. _, ocr_enable, _lang = images_with_extra_info[index]
  59. layout_res = images_layout_res[index]
  60. np_img = np_images[index]
  61. ocr_res_list, table_res_list, single_page_mfdetrec_res = (
  62. get_res_list_from_layout_res(layout_res)
  63. )
  64. ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
  65. 'lang':_lang,
  66. 'ocr_enable':ocr_enable,
  67. 'np_img':np_img,
  68. 'single_page_mfdetrec_res':single_page_mfdetrec_res,
  69. 'layout_res':layout_res,
  70. })
  71. for table_res in table_res_list:
  72. # table_img, _ = crop_img(table_res, pil_img)
  73. # bbox = (241, 208, 1475, 2019)
  74. scale = 10/3
  75. crop_xmin, crop_ymin = int(table_res['poly'][0]), int(table_res['poly'][1])
  76. crop_xmax, crop_ymax = int(table_res['poly'][4]), int(table_res['poly'][5])
  77. bbox = (int(crop_xmin/scale), int(crop_ymin/scale), int(crop_xmax/scale), int(crop_ymax/scale))
  78. table_img = get_crop_np_img(bbox, np_img, scale=scale)
  79. table_res_list_all_page.append({'table_res':table_res,
  80. 'lang':_lang,
  81. 'table_img':table_img,
  82. })
  83. # OCR检测处理
  84. if self.enable_ocr_det_batch:
  85. # 批处理模式 - 按语言和分辨率分组
  86. # 收集所有需要OCR检测的裁剪图像
  87. all_cropped_images_info = []
  88. for ocr_res_list_dict in ocr_res_list_all_page:
  89. _lang = ocr_res_list_dict['lang']
  90. for res in ocr_res_list_dict['ocr_res_list']:
  91. new_image, useful_list = crop_img(
  92. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  93. )
  94. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  95. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  96. )
  97. # BGR转换
  98. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  99. all_cropped_images_info.append((
  100. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang
  101. ))
  102. # 按语言分组
  103. lang_groups = defaultdict(list)
  104. for crop_info in all_cropped_images_info:
  105. lang = crop_info[5]
  106. lang_groups[lang].append(crop_info)
  107. # 对每种语言按分辨率分组并批处理
  108. for lang, lang_crop_list in lang_groups.items():
  109. if not lang_crop_list:
  110. continue
  111. # logger.info(f"Processing OCR detection for language {lang} with {len(lang_crop_list)} images")
  112. # 获取OCR模型
  113. ocr_model = atom_model_manager.get_atom_model(
  114. atom_model_name=AtomicModel.OCR,
  115. det_db_box_thresh=0.3,
  116. lang=lang
  117. )
  118. # 按分辨率分组并同时完成padding
  119. # RESOLUTION_GROUP_STRIDE = 32
  120. RESOLUTION_GROUP_STRIDE = 64 # 定义分辨率分组的步进值
  121. resolution_groups = defaultdict(list)
  122. for crop_info in lang_crop_list:
  123. cropped_img = crop_info[0]
  124. h, w = cropped_img.shape[:2]
  125. # 使用更大的分组容差,减少分组数量
  126. # 将尺寸标准化到32的倍数
  127. normalized_h = ((h + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE # 向上取整到32的倍数
  128. normalized_w = ((w + RESOLUTION_GROUP_STRIDE) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  129. group_key = (normalized_h, normalized_w)
  130. resolution_groups[group_key].append(crop_info)
  131. # 对每个分辨率组进行批处理
  132. for group_key, group_crops in tqdm(resolution_groups.items(), desc=f"OCR-det {lang}"):
  133. # 计算目标尺寸(组内最大尺寸,向上取整到32的倍数)
  134. max_h = max(crop_info[0].shape[0] for crop_info in group_crops)
  135. max_w = max(crop_info[0].shape[1] for crop_info in group_crops)
  136. target_h = ((max_h + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  137. target_w = ((max_w + RESOLUTION_GROUP_STRIDE - 1) // RESOLUTION_GROUP_STRIDE) * RESOLUTION_GROUP_STRIDE
  138. # 对所有图像进行padding到统一尺寸
  139. batch_images = []
  140. for crop_info in group_crops:
  141. img = crop_info[0]
  142. h, w = img.shape[:2]
  143. # 创建目标尺寸的白色背景
  144. padded_img = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
  145. # 将原图像粘贴到左上角
  146. padded_img[:h, :w] = img
  147. batch_images.append(padded_img)
  148. # 批处理检测
  149. det_batch_size = min(len(batch_images), self.batch_ratio * OCR_DET_BASE_BATCH_SIZE) # 增加批处理大小
  150. # logger.debug(f"OCR-det batch: {det_batch_size} images, target size: {target_h}x{target_w}")
  151. batch_results = ocr_model.text_detector.batch_predict(batch_images, det_batch_size)
  152. # 处理批处理结果
  153. for i, (crop_info, (dt_boxes, elapse)) in enumerate(zip(group_crops, batch_results)):
  154. bgr_image, useful_list, ocr_res_list_dict, res, adjusted_mfdetrec_res, _lang = crop_info
  155. if dt_boxes is not None and len(dt_boxes) > 0:
  156. # 直接应用原始OCR流程中的关键处理步骤
  157. from mineru.utils.ocr_utils import (
  158. merge_det_boxes, update_det_boxes, sorted_boxes
  159. )
  160. # 1. 排序检测框
  161. if len(dt_boxes) > 0:
  162. dt_boxes_sorted = sorted_boxes(dt_boxes)
  163. else:
  164. dt_boxes_sorted = []
  165. # 2. 合并相邻检测框
  166. if dt_boxes_sorted:
  167. dt_boxes_merged = merge_det_boxes(dt_boxes_sorted)
  168. else:
  169. dt_boxes_merged = []
  170. # 3. 根据公式位置更新检测框(关键步骤!)
  171. if dt_boxes_merged and adjusted_mfdetrec_res:
  172. dt_boxes_final = update_det_boxes(dt_boxes_merged, adjusted_mfdetrec_res)
  173. else:
  174. dt_boxes_final = dt_boxes_merged
  175. # 构造OCR结果格式
  176. ocr_res = [box.tolist() if hasattr(box, 'tolist') else box for box in dt_boxes_final]
  177. if ocr_res:
  178. ocr_result_list = get_ocr_result_list(
  179. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], bgr_image, _lang
  180. )
  181. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  182. else:
  183. # 原始单张处理模式
  184. for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
  185. # Process each area that requires OCR processing
  186. _lang = ocr_res_list_dict['lang']
  187. # Get OCR results for this language's images
  188. ocr_model = atom_model_manager.get_atom_model(
  189. atom_model_name=AtomicModel.OCR,
  190. ocr_show_log=False,
  191. det_db_box_thresh=0.3,
  192. lang=_lang
  193. )
  194. for res in ocr_res_list_dict['ocr_res_list']:
  195. new_image, useful_list = crop_img(
  196. res, ocr_res_list_dict['np_img'], crop_paste_x=50, crop_paste_y=50
  197. )
  198. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  199. ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
  200. )
  201. # OCR-det
  202. bgr_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
  203. ocr_res = ocr_model.ocr(
  204. bgr_image, mfd_res=adjusted_mfdetrec_res, rec=False
  205. )[0]
  206. # Integration results
  207. if ocr_res:
  208. ocr_result_list = get_ocr_result_list(
  209. ocr_res, useful_list, ocr_res_list_dict['ocr_enable'],bgr_image, _lang
  210. )
  211. ocr_res_list_dict['layout_res'].extend(ocr_result_list)
  212. # 表格识别 table recognition
  213. if self.table_enable:
  214. for table_res_dict in tqdm(table_res_list_all_page, desc="Table Predict"):
  215. _lang = table_res_dict['lang']
  216. # 调整图片方向
  217. img_orientation_cls_model = atom_model_manager.get_atom_model(
  218. atom_model_name=AtomicModel.ImgOrientationCls,
  219. )
  220. try:
  221. rotate_label = img_orientation_cls_model.predict(
  222. table_res_dict["table_img"]
  223. )
  224. except Exception as e:
  225. logger.warning(
  226. f"Image orientation classification failed: {e}, using original image"
  227. )
  228. rotate_label = "0"
  229. np_table_img = table_res_dict["table_img"]
  230. if rotate_label == "270":
  231. np_table_img = cv2.rotate(np_table_img, cv2.ROTATE_90_CLOCKWISE)
  232. elif rotate_label == "90":
  233. np_table_img = cv2.rotate(np_table_img, cv2.ROTATE_90_COUNTERCLOCKWISE)
  234. else:
  235. pass
  236. # 有线表/无线表分类
  237. table_cls_model = atom_model_manager.get_atom_model(
  238. atom_model_name=AtomicModel.TableCls,
  239. )
  240. table_cls_score = 0.5
  241. try:
  242. table_label, table_cls_score = table_cls_model.predict(np_table_img)
  243. except Exception as e:
  244. table_label = AtomicModel.WirelessTable
  245. logger.warning(
  246. f"Table classification failed: {e}, using default model {table_label}"
  247. )
  248. # table_label = AtomicModel.WirelessTable
  249. # logger.debug(f"Table classification result: {table_label}")
  250. if table_label not in [AtomicModel.WirelessTable, AtomicModel.WiredTable]:
  251. raise ValueError(
  252. "Table classification failed, please check the model"
  253. )
  254. # 根据表格分类结果选择有线表格识别模型和无线表格识别模型
  255. table_model = atom_model_manager.get_atom_model(
  256. atom_model_name=table_label,
  257. lang=_lang,
  258. )
  259. html_code, table_cell_bboxes, logic_points, elapse = table_model.predict(np_table_img, table_cls_score)
  260. # 判断是否返回正常
  261. if html_code:
  262. # 检查html_code是否包含'<table>'和'</table>'
  263. if '<table>' in html_code and '</table>' in html_code:
  264. # 选用<table>到</table>的内容,放入table_res_dict['table_res']['html']
  265. start_index = html_code.find('<table>')
  266. end_index = html_code.rfind('</table>') + len('</table>')
  267. table_res_dict['table_res']['html'] = html_code[start_index:end_index]
  268. else:
  269. logger.warning(
  270. 'table recognition processing fails, not found expected HTML table end'
  271. )
  272. else:
  273. logger.warning(
  274. 'table recognition processing fails, not get html return'
  275. )
  276. # Create dictionaries to store items by language
  277. need_ocr_lists_by_lang = {} # Dict of lists for each language
  278. img_crop_lists_by_lang = {} # Dict of lists for each language
  279. for layout_res in images_layout_res:
  280. for layout_res_item in layout_res:
  281. if layout_res_item['category_id'] in [15]:
  282. if 'np_img' in layout_res_item and 'lang' in layout_res_item:
  283. lang = layout_res_item['lang']
  284. # Initialize lists for this language if not exist
  285. if lang not in need_ocr_lists_by_lang:
  286. need_ocr_lists_by_lang[lang] = []
  287. img_crop_lists_by_lang[lang] = []
  288. # Add to the appropriate language-specific lists
  289. need_ocr_lists_by_lang[lang].append(layout_res_item)
  290. img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])
  291. # Remove the fields after adding to lists
  292. layout_res_item.pop('np_img')
  293. layout_res_item.pop('lang')
  294. if len(img_crop_lists_by_lang) > 0:
  295. # Process OCR by language
  296. total_processed = 0
  297. # Process each language separately
  298. for lang, img_crop_list in img_crop_lists_by_lang.items():
  299. if len(img_crop_list) > 0:
  300. # Get OCR results for this language's images
  301. ocr_model = atom_model_manager.get_atom_model(
  302. atom_model_name=AtomicModel.OCR,
  303. det_db_box_thresh=0.3,
  304. lang=lang
  305. )
  306. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  307. # Verify we have matching counts
  308. assert len(ocr_res_list) == len(
  309. need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
  310. # Process OCR results for this language
  311. for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
  312. ocr_text, ocr_score = ocr_res_list[index]
  313. layout_res_item['text'] = ocr_text
  314. layout_res_item['score'] = float(f"{ocr_score:.3f}")
  315. if ocr_score < OcrConfidence.min_confidence:
  316. layout_res_item['category_id'] = 16
  317. else:
  318. layout_res_bbox = [layout_res_item['poly'][0], layout_res_item['poly'][1],
  319. layout_res_item['poly'][4], layout_res_item['poly'][5]]
  320. layout_res_width = layout_res_bbox[2] - layout_res_bbox[0]
  321. layout_res_height = layout_res_bbox[3] - layout_res_bbox[1]
  322. if ocr_text in ['(204号', '(20', '(2', '(2号', '(20号'] and ocr_score < 0.8 and layout_res_width < layout_res_height:
  323. layout_res_item['category_id'] = 16
  324. total_processed += len(img_crop_list)
  325. return images_layout_res