rapid_table.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. import os
  2. from pathlib import Path
  3. import cv2
  4. import numpy as np
  5. import torch
  6. from loguru import logger
  7. from rapid_table import RapidTable, RapidTableInput
  8. from rapid_table.main import ModelType
  9. from magic_pdf.libs.config_reader import get_device
  10. class RapidTableModel(object):
  11. def __init__(self, ocr_engine, table_sub_model_name='slanet_plus'):
  12. sub_model_list = [model.value for model in ModelType]
  13. if table_sub_model_name is None:
  14. input_args = RapidTableInput()
  15. elif table_sub_model_name in sub_model_list:
  16. if torch.cuda.is_available() and table_sub_model_name == "unitable":
  17. input_args = RapidTableInput(model_type=table_sub_model_name, use_cuda=True, device=get_device())
  18. else:
  19. root_dir = Path(__file__).absolute().parent.parent.parent.parent.parent
  20. slanet_plus_model_path = os.path.join(root_dir, 'resources', 'slanet_plus', 'slanet-plus.onnx')
  21. input_args = RapidTableInput(model_type=table_sub_model_name, model_path=slanet_plus_model_path)
  22. else:
  23. raise ValueError(f"Invalid table_sub_model_name: {table_sub_model_name}. It must be one of {sub_model_list}")
  24. self.table_model = RapidTable(input_args)
  25. # self.ocr_model_name = "RapidOCR"
  26. # if torch.cuda.is_available():
  27. # from rapidocr_paddle import RapidOCR
  28. # self.ocr_engine = RapidOCR(det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True)
  29. # else:
  30. # from rapidocr_onnxruntime import RapidOCR
  31. # self.ocr_engine = RapidOCR()
  32. self.ocr_model_name = "PaddleOCR"
  33. self.ocr_engine = ocr_engine
  34. def predict(self, image):
  35. if self.ocr_model_name == "RapidOCR":
  36. ocr_result, _ = self.ocr_engine(np.asarray(image))
  37. elif self.ocr_model_name == "PaddleOCR":
  38. bgr_image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
  39. ocr_result = self.ocr_engine.ocr(bgr_image)[0]
  40. if ocr_result:
  41. ocr_result = [[item[0], item[1][0], item[1][1]] for item in ocr_result if
  42. len(item) == 2 and isinstance(item[1], tuple)]
  43. else:
  44. ocr_result = None
  45. else:
  46. logger.error("OCR model not supported")
  47. ocr_result = None
  48. if ocr_result:
  49. table_results = self.table_model(np.asarray(image), ocr_result)
  50. html_code = table_results.pred_html
  51. table_cell_bboxes = table_results.cell_bboxes
  52. logic_points = table_results.logic_points
  53. elapse = table_results.elapse
  54. return html_code, table_cell_bboxes, logic_points, elapse
  55. else:
  56. return None, None, None, None