pdf_parse_union_core_v2.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. import statistics
  2. import time
  3. from loguru import logger
  4. from typing import List
  5. import torch
  6. from magic_pdf.libs.commons import fitz, get_delta_time
  7. from magic_pdf.libs.convert_utils import dict_to_list
  8. from magic_pdf.libs.drop_reason import DropReason
  9. from magic_pdf.libs.hash_utils import compute_md5
  10. from magic_pdf.libs.local_math import float_equal
  11. from magic_pdf.libs.ocr_content_type import ContentType
  12. from magic_pdf.model.magic_model import MagicModel
  13. from magic_pdf.para.para_split_v2 import para_split
  14. from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
  15. from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
  16. from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
  17. from magic_pdf.pre_proc.equations_replace import remove_chars_in_text_blocks, replace_equations_in_textblock, \
  18. combine_chars_to_pymudict
  19. from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split_v2
  20. from magic_pdf.pre_proc.ocr_dict_merge import fill_spans_in_blocks, fix_block_spans, fix_discarded_block
  21. from magic_pdf.pre_proc.ocr_span_list_modify import remove_overlaps_min_spans, get_qa_need_list_v2, \
  22. remove_overlaps_low_confidence_spans
  23. from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap
  24. def remove_horizontal_overlap_block_which_smaller(all_bboxes):
  25. useful_blocks = []
  26. for bbox in all_bboxes:
  27. useful_blocks.append({
  28. "bbox": bbox[:4]
  29. })
  30. is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = check_useful_block_horizontal_overlap(useful_blocks)
  31. if is_useful_block_horz_overlap:
  32. logger.warning(
  33. f"skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}")
  34. for bbox in all_bboxes.copy():
  35. if smaller_bbox == bbox[:4]:
  36. all_bboxes.remove(bbox)
  37. return is_useful_block_horz_overlap, all_bboxes
  38. def __replace_STX_ETX(text_str:str):
  39. """ Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks.
  40. Drawback: This issue is only observed in English text; it has not been found in Chinese text so far.
  41. Args:
  42. text_str (str): raw text
  43. Returns:
  44. _type_: replaced text
  45. """
  46. if text_str:
  47. s = text_str.replace('\u0002', "'")
  48. s = s.replace("\u0003", "'")
  49. return s
  50. return text_str
  51. def txt_spans_extract(pdf_page, inline_equations, interline_equations):
  52. text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
  53. char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
  54. "blocks"
  55. ]
  56. text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
  57. text_blocks = replace_equations_in_textblock(
  58. text_blocks, inline_equations, interline_equations
  59. )
  60. text_blocks = remove_citation_marker(text_blocks)
  61. text_blocks = remove_chars_in_text_blocks(text_blocks)
  62. spans = []
  63. for v in text_blocks:
  64. for line in v["lines"]:
  65. for span in line["spans"]:
  66. bbox = span["bbox"]
  67. if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
  68. continue
  69. if span.get('type') not in (ContentType.InlineEquation, ContentType.InterlineEquation):
  70. spans.append(
  71. {
  72. "bbox": list(span["bbox"]),
  73. "content": __replace_STX_ETX(span["text"]),
  74. "type": ContentType.Text,
  75. "score": 1.0,
  76. }
  77. )
  78. return spans
  79. def replace_text_span(pymu_spans, ocr_spans):
  80. return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans
  81. def do_predict(boxes: List[List[int]]) -> List[int]:
  82. from transformers import LayoutLMv3ForTokenClassification
  83. from magic_pdf.v3.helpers import prepare_inputs, boxes2inputs, parse_logits
  84. model = LayoutLMv3ForTokenClassification.from_pretrained("hantian/layoutreader")
  85. # model.to("cuda")
  86. inputs = boxes2inputs(boxes)
  87. inputs = prepare_inputs(inputs, model)
  88. logits = model(**inputs).logits.cpu().squeeze(0)
  89. return parse_logits(logits, len(boxes))
  90. def parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode):
  91. need_drop = False
  92. drop_reason = []
  93. '''从magic_model对象中获取后面会用到的区块信息'''
  94. img_blocks = magic_model.get_imgs(page_id)
  95. table_blocks = magic_model.get_tables(page_id)
  96. discarded_blocks = magic_model.get_discarded(page_id)
  97. text_blocks = magic_model.get_text_blocks(page_id)
  98. title_blocks = magic_model.get_title_blocks(page_id)
  99. inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations(page_id)
  100. page_w, page_h = magic_model.get_page_size(page_id)
  101. spans = magic_model.get_all_spans(page_id)
  102. '''根据parse_mode,构造spans'''
  103. if parse_mode == "txt":
  104. """ocr 中文本类的 span 用 pymu spans 替换!"""
  105. pymu_spans = txt_spans_extract(
  106. pdf_docs[page_id], inline_equations, interline_equations
  107. )
  108. spans = replace_text_span(pymu_spans, spans)
  109. elif parse_mode == "ocr":
  110. pass
  111. else:
  112. raise Exception("parse_mode must be txt or ocr")
  113. '''删除重叠spans中置信度较低的那些'''
  114. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  115. '''删除重叠spans中较小的那些'''
  116. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  117. '''对image和table截图'''
  118. spans = ocr_cut_image_and_table(spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter)
  119. '''将所有区块的bbox整理到一起'''
  120. # interline_equation_blocks参数不够准,后面切换到interline_equations上
  121. interline_equation_blocks = []
  122. if len(interline_equation_blocks) > 0:
  123. all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
  124. img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
  125. interline_equation_blocks, page_w, page_h)
  126. else:
  127. all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
  128. img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
  129. interline_equations, page_w, page_h)
  130. # if len(drop_reasons) > 0:
  131. # need_drop = True
  132. # drop_reason.append(DropReason.OVERLAP_BLOCKS_CAN_NOT_SEPARATION)
  133. '''先处理不需要排版的discarded_blocks'''
  134. discarded_block_with_spans, spans = fill_spans_in_blocks(all_discarded_blocks, spans, 0.4)
  135. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  136. '''如果当前页面没有bbox则跳过'''
  137. if len(all_bboxes) == 0:
  138. logger.warning(f"skip this page, not found useful bbox, page_id: {page_id}")
  139. return ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
  140. [], [], interline_equations, fix_discarded_blocks,
  141. need_drop, drop_reason)
  142. '''将span填入排好序的blocks中'''
  143. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.3)
  144. '''对block进行fix操作'''
  145. fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)
  146. '''获取所有line并对line排序'''
  147. page_line_list = []
  148. for block in fix_blocks:
  149. if block['type'] == 'text' or block['type'] == 'title' or block['type'] == 'interline_equation':
  150. for line in block['lines']:
  151. bbox = line['bbox']
  152. page_line_list.append(bbox)
  153. elif block['type'] == 'table' or block['type'] == 'image': # 简单的把表和图都当成一个line处理
  154. bbox = block['bbox']
  155. page_line_list.append(bbox)
  156. # 使用layoutreader排序
  157. x_scale = 1000.0 / page_w
  158. y_scale = 1000.0 / page_h
  159. boxes = []
  160. logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
  161. for left, top, right, bottom in page_line_list:
  162. left = round(left * x_scale)
  163. top = round(top * y_scale)
  164. right = round(right * x_scale)
  165. bottom = round(bottom * y_scale)
  166. assert (
  167. 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
  168. ), f"Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}"
  169. boxes.append([left, top, right, bottom])
  170. layoutreader_start = time.time()
  171. orders = do_predict(boxes)
  172. # if torch.cuda.is_available():
  173. # torch.cuda.empty_cache()
  174. # print(orders)
  175. logger.info(f"layoutreader cost time{time.time() - layoutreader_start}")
  176. sorted_bboxes = [page_line_list[i] for i in orders]
  177. '''根据line的中位数算block的序列关系'''
  178. block_without_lines = []
  179. for block in fix_blocks:
  180. if block['type'] == 'text' or block['type'] == 'title' or block['type'] == 'interline_equation':
  181. line_index_list = []
  182. if len(block['lines']) == 0:
  183. block_without_lines.append(block)
  184. continue
  185. else:
  186. for line in block['lines']:
  187. # for line_bbox in sorted_bboxes:
  188. # if line['bbox'] == line_bbox:
  189. line['index'] = sorted_bboxes.index(line['bbox'])
  190. line_index_list.append(line['index'])
  191. median_value = statistics.median(line_index_list)
  192. block['index'] = median_value
  193. elif block['type'] == 'table' or block['type'] == 'image':
  194. # for line_bbox in sorted_bboxes:
  195. # if block['bbox'] == line_bbox:
  196. block['index'] = sorted_bboxes.index(block['bbox'])
  197. '''移除没有line的block'''
  198. for block in block_without_lines:
  199. fix_blocks.remove(block)
  200. '''重排block'''
  201. sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
  202. '''获取QA需要外置的list'''
  203. images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks)
  204. '''构造pdf_info_dict'''
  205. page_info = ocr_construct_page_component_v2(sorted_blocks, [], page_id, page_w, page_h, [],
  206. images, tables, interline_equations, fix_discarded_blocks,
  207. need_drop, drop_reason)
  208. return page_info
  209. def clean_memory():
  210. import gc
  211. if torch.cuda.is_available():
  212. torch.cuda.empty_cache()
  213. torch.cuda.ipc_collect()
  214. gc.collect()
  215. def pdf_parse_union(pdf_bytes,
  216. model_list,
  217. imageWriter,
  218. parse_mode,
  219. start_page_id=0,
  220. end_page_id=None,
  221. debug_mode=False,
  222. ):
  223. pdf_bytes_md5 = compute_md5(pdf_bytes)
  224. pdf_docs = fitz.open("pdf", pdf_bytes)
  225. '''初始化空的pdf_info_dict'''
  226. pdf_info_dict = {}
  227. '''用model_list和docs对象初始化magic_model'''
  228. magic_model = MagicModel(model_list, pdf_docs)
  229. '''根据输入的起始范围解析pdf'''
  230. # end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
  231. end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf_docs) - 1
  232. if end_page_id > len(pdf_docs) - 1:
  233. logger.warning("end_page_id is out of range, use pdf_docs length")
  234. end_page_id = len(pdf_docs) - 1
  235. '''初始化启动时间'''
  236. start_time = time.time()
  237. for page_id, page in enumerate(pdf_docs):
  238. '''debug时输出每页解析的耗时'''
  239. if debug_mode:
  240. time_now = time.time()
  241. logger.info(
  242. f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
  243. )
  244. start_time = time_now
  245. '''解析pdf中的每一页'''
  246. if start_page_id <= page_id <= end_page_id:
  247. page_info = parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode)
  248. else:
  249. page_w = page.rect.width
  250. page_h = page.rect.height
  251. page_info = ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
  252. [], [], [], [],
  253. True, "skip page")
  254. pdf_info_dict[f"page_{page_id}"] = page_info
  255. """分段"""
  256. # para_split(pdf_info_dict, debug_mode=debug_mode)
  257. for page_num, page in pdf_info_dict.items():
  258. page['para_blocks'] = page['preproc_blocks']
  259. """dict转list"""
  260. pdf_info_list = dict_to_list(pdf_info_dict)
  261. new_pdf_info_dict = {
  262. "pdf_info": pdf_info_list,
  263. }
  264. clean_memory()
  265. return new_pdf_info_dict
  266. if __name__ == '__main__':
  267. pass