| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- import statistics
- import time
- from loguru import logger
- from typing import List
- import torch
- from magic_pdf.libs.commons import fitz, get_delta_time
- from magic_pdf.libs.convert_utils import dict_to_list
- from magic_pdf.libs.drop_reason import DropReason
- from magic_pdf.libs.hash_utils import compute_md5
- from magic_pdf.libs.local_math import float_equal
- from magic_pdf.libs.ocr_content_type import ContentType
- from magic_pdf.model.magic_model import MagicModel
- from magic_pdf.para.para_split_v2 import para_split
- from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
- from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
- from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
- from magic_pdf.pre_proc.equations_replace import remove_chars_in_text_blocks, replace_equations_in_textblock, \
- combine_chars_to_pymudict
- from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split_v2
- from magic_pdf.pre_proc.ocr_dict_merge import fill_spans_in_blocks, fix_block_spans, fix_discarded_block
- from magic_pdf.pre_proc.ocr_span_list_modify import remove_overlaps_min_spans, get_qa_need_list_v2, \
- remove_overlaps_low_confidence_spans
- from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap
- def remove_horizontal_overlap_block_which_smaller(all_bboxes):
- useful_blocks = []
- for bbox in all_bboxes:
- useful_blocks.append({
- "bbox": bbox[:4]
- })
- is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = check_useful_block_horizontal_overlap(useful_blocks)
- if is_useful_block_horz_overlap:
- logger.warning(
- f"skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}")
- for bbox in all_bboxes.copy():
- if smaller_bbox == bbox[:4]:
- all_bboxes.remove(bbox)
- return is_useful_block_horz_overlap, all_bboxes
- def __replace_STX_ETX(text_str:str):
- """ Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks.
- Drawback: This issue is only observed in English text; it has not been found in Chinese text so far.
- Args:
- text_str (str): raw text
- Returns:
- _type_: replaced text
- """
- if text_str:
- s = text_str.replace('\u0002', "'")
- s = s.replace("\u0003", "'")
- return s
- return text_str
- def txt_spans_extract(pdf_page, inline_equations, interline_equations):
- text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
- char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
- "blocks"
- ]
- text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
- text_blocks = replace_equations_in_textblock(
- text_blocks, inline_equations, interline_equations
- )
- text_blocks = remove_citation_marker(text_blocks)
- text_blocks = remove_chars_in_text_blocks(text_blocks)
- spans = []
- for v in text_blocks:
- for line in v["lines"]:
- for span in line["spans"]:
- bbox = span["bbox"]
- if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
- continue
- if span.get('type') not in (ContentType.InlineEquation, ContentType.InterlineEquation):
- spans.append(
- {
- "bbox": list(span["bbox"]),
- "content": __replace_STX_ETX(span["text"]),
- "type": ContentType.Text,
- "score": 1.0,
- }
- )
- return spans
- def replace_text_span(pymu_spans, ocr_spans):
- return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans
- def do_predict(boxes: List[List[int]]) -> List[int]:
- from transformers import LayoutLMv3ForTokenClassification
- from magic_pdf.v3.helpers import prepare_inputs, boxes2inputs, parse_logits
- model = LayoutLMv3ForTokenClassification.from_pretrained("hantian/layoutreader")
- # model.to("cuda")
- inputs = boxes2inputs(boxes)
- inputs = prepare_inputs(inputs, model)
- logits = model(**inputs).logits.cpu().squeeze(0)
- return parse_logits(logits, len(boxes))
- def parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode):
- need_drop = False
- drop_reason = []
- '''从magic_model对象中获取后面会用到的区块信息'''
- img_blocks = magic_model.get_imgs(page_id)
- table_blocks = magic_model.get_tables(page_id)
- discarded_blocks = magic_model.get_discarded(page_id)
- text_blocks = magic_model.get_text_blocks(page_id)
- title_blocks = magic_model.get_title_blocks(page_id)
- inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations(page_id)
- page_w, page_h = magic_model.get_page_size(page_id)
- spans = magic_model.get_all_spans(page_id)
- '''根据parse_mode,构造spans'''
- if parse_mode == "txt":
- """ocr 中文本类的 span 用 pymu spans 替换!"""
- pymu_spans = txt_spans_extract(
- pdf_docs[page_id], inline_equations, interline_equations
- )
- spans = replace_text_span(pymu_spans, spans)
- elif parse_mode == "ocr":
- pass
- else:
- raise Exception("parse_mode must be txt or ocr")
- '''删除重叠spans中置信度较低的那些'''
- spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
- '''删除重叠spans中较小的那些'''
- spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
- '''对image和table截图'''
- spans = ocr_cut_image_and_table(spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter)
- '''将所有区块的bbox整理到一起'''
- # interline_equation_blocks参数不够准,后面切换到interline_equations上
- interline_equation_blocks = []
- if len(interline_equation_blocks) > 0:
- all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
- img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
- interline_equation_blocks, page_w, page_h)
- else:
- all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
- img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
- interline_equations, page_w, page_h)
- # if len(drop_reasons) > 0:
- # need_drop = True
- # drop_reason.append(DropReason.OVERLAP_BLOCKS_CAN_NOT_SEPARATION)
- '''先处理不需要排版的discarded_blocks'''
- discarded_block_with_spans, spans = fill_spans_in_blocks(all_discarded_blocks, spans, 0.4)
- fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
- '''如果当前页面没有bbox则跳过'''
- if len(all_bboxes) == 0:
- logger.warning(f"skip this page, not found useful bbox, page_id: {page_id}")
- return ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
- [], [], interline_equations, fix_discarded_blocks,
- need_drop, drop_reason)
- '''将span填入排好序的blocks中'''
- block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.3)
- '''对block进行fix操作'''
- fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)
- '''获取所有line并对line排序'''
- page_line_list = []
- for block in fix_blocks:
- if block['type'] == 'text' or block['type'] == 'title' or block['type'] == 'interline_equation':
- for line in block['lines']:
- bbox = line['bbox']
- page_line_list.append(bbox)
- elif block['type'] == 'table' or block['type'] == 'image': # 简单的把表和图都当成一个line处理
- bbox = block['bbox']
- page_line_list.append(bbox)
- # 使用layoutreader排序
- x_scale = 1000.0 / page_w
- y_scale = 1000.0 / page_h
- boxes = []
- logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
- for left, top, right, bottom in page_line_list:
- left = round(left * x_scale)
- top = round(top * y_scale)
- right = round(right * x_scale)
- bottom = round(bottom * y_scale)
- assert (
- 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
- ), f"Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}"
- boxes.append([left, top, right, bottom])
- layoutreader_start = time.time()
- orders = do_predict(boxes)
- # if torch.cuda.is_available():
- # torch.cuda.empty_cache()
- # print(orders)
- logger.info(f"layoutreader cost time{time.time() - layoutreader_start}")
- sorted_bboxes = [page_line_list[i] for i in orders]
- '''根据line的中位数算block的序列关系'''
- block_without_lines = []
- for block in fix_blocks:
- if block['type'] == 'text' or block['type'] == 'title' or block['type'] == 'interline_equation':
- line_index_list = []
- if len(block['lines']) == 0:
- block_without_lines.append(block)
- continue
- else:
- for line in block['lines']:
- # for line_bbox in sorted_bboxes:
- # if line['bbox'] == line_bbox:
- line['index'] = sorted_bboxes.index(line['bbox'])
- line_index_list.append(line['index'])
- median_value = statistics.median(line_index_list)
- block['index'] = median_value
- elif block['type'] == 'table' or block['type'] == 'image':
- # for line_bbox in sorted_bboxes:
- # if block['bbox'] == line_bbox:
- block['index'] = sorted_bboxes.index(block['bbox'])
- '''移除没有line的block'''
- for block in block_without_lines:
- fix_blocks.remove(block)
- '''重排block'''
- sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
- '''获取QA需要外置的list'''
- images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks)
- '''构造pdf_info_dict'''
- page_info = ocr_construct_page_component_v2(sorted_blocks, [], page_id, page_w, page_h, [],
- images, tables, interline_equations, fix_discarded_blocks,
- need_drop, drop_reason)
- return page_info
- def clean_memory():
- import gc
- if torch.cuda.is_available():
- torch.cuda.empty_cache()
- torch.cuda.ipc_collect()
- gc.collect()
- def pdf_parse_union(pdf_bytes,
- model_list,
- imageWriter,
- parse_mode,
- start_page_id=0,
- end_page_id=None,
- debug_mode=False,
- ):
- pdf_bytes_md5 = compute_md5(pdf_bytes)
- pdf_docs = fitz.open("pdf", pdf_bytes)
- '''初始化空的pdf_info_dict'''
- pdf_info_dict = {}
- '''用model_list和docs对象初始化magic_model'''
- magic_model = MagicModel(model_list, pdf_docs)
- '''根据输入的起始范围解析pdf'''
- # end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
- end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf_docs) - 1
- if end_page_id > len(pdf_docs) - 1:
- logger.warning("end_page_id is out of range, use pdf_docs length")
- end_page_id = len(pdf_docs) - 1
- '''初始化启动时间'''
- start_time = time.time()
- for page_id, page in enumerate(pdf_docs):
- '''debug时输出每页解析的耗时'''
- if debug_mode:
- time_now = time.time()
- logger.info(
- f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
- )
- start_time = time_now
- '''解析pdf中的每一页'''
- if start_page_id <= page_id <= end_page_id:
- page_info = parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode)
- else:
- page_w = page.rect.width
- page_h = page.rect.height
- page_info = ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
- [], [], [], [],
- True, "skip page")
- pdf_info_dict[f"page_{page_id}"] = page_info
- """分段"""
- # para_split(pdf_info_dict, debug_mode=debug_mode)
- for page_num, page in pdf_info_dict.items():
- page['para_blocks'] = page['preproc_blocks']
- """dict转list"""
- pdf_info_list = dict_to_list(pdf_info_dict)
- new_pdf_info_dict = {
- "pdf_info": pdf_info_list,
- }
- clean_memory()
- return new_pdf_info_dict
- if __name__ == '__main__':
- pass
|