model_utils.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. import time
  2. import torch
  3. import gc
  4. from PIL import Image
  5. from loguru import logger
  6. import numpy as np
  7. from mineru.utils.boxbase import get_minbox_if_overlap_by_ratio
  8. def crop_img(input_res, input_img, crop_paste_x=0, crop_paste_y=0):
  9. crop_xmin, crop_ymin = int(input_res['poly'][0]), int(input_res['poly'][1])
  10. crop_xmax, crop_ymax = int(input_res['poly'][4]), int(input_res['poly'][5])
  11. # Calculate new dimensions
  12. crop_new_width = crop_xmax - crop_xmin + crop_paste_x * 2
  13. crop_new_height = crop_ymax - crop_ymin + crop_paste_y * 2
  14. if isinstance(input_img, np.ndarray):
  15. # Create a white background array
  16. return_image = np.ones((crop_new_height, crop_new_width, 3), dtype=np.uint8) * 255
  17. # Crop the original image using numpy slicing
  18. cropped_img = input_img[crop_ymin:crop_ymax, crop_xmin:crop_xmax]
  19. # Paste the cropped image onto the white background
  20. return_image[crop_paste_y:crop_paste_y + (crop_ymax - crop_ymin),
  21. crop_paste_x:crop_paste_x + (crop_xmax - crop_xmin)] = cropped_img
  22. else:
  23. # Create a white background array
  24. return_image = Image.new('RGB', (crop_new_width, crop_new_height), 'white')
  25. # Crop image
  26. crop_box = (crop_xmin, crop_ymin, crop_xmax, crop_ymax)
  27. cropped_img = input_img.crop(crop_box)
  28. return_image.paste(cropped_img, (crop_paste_x, crop_paste_y))
  29. return_list = [crop_paste_x, crop_paste_y, crop_xmin, crop_ymin, crop_xmax, crop_ymax, crop_new_width,
  30. crop_new_height]
  31. return return_image, return_list
  32. def get_coords_and_area(block_with_poly):
  33. """Extract coordinates and area from a table."""
  34. xmin, ymin = int(block_with_poly['poly'][0]), int(block_with_poly['poly'][1])
  35. xmax, ymax = int(block_with_poly['poly'][4]), int(block_with_poly['poly'][5])
  36. area = (xmax - xmin) * (ymax - ymin)
  37. return xmin, ymin, xmax, ymax, area
  38. def calculate_intersection(box1, box2):
  39. """Calculate intersection coordinates between two boxes."""
  40. intersection_xmin = max(box1[0], box2[0])
  41. intersection_ymin = max(box1[1], box2[1])
  42. intersection_xmax = min(box1[2], box2[2])
  43. intersection_ymax = min(box1[3], box2[3])
  44. # Check if intersection is valid
  45. if intersection_xmax <= intersection_xmin or intersection_ymax <= intersection_ymin:
  46. return None
  47. return intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax
  48. def calculate_iou(box1, box2):
  49. """Calculate IoU between two boxes."""
  50. intersection = calculate_intersection(box1[:4], box2[:4])
  51. if not intersection:
  52. return 0
  53. intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
  54. intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)
  55. area1, area2 = box1[4], box2[4]
  56. union_area = area1 + area2 - intersection_area
  57. return intersection_area / union_area if union_area > 0 else 0
  58. def is_inside(small_box, big_box, overlap_threshold=0.8):
  59. """Check if small_box is inside big_box by at least overlap_threshold."""
  60. intersection = calculate_intersection(small_box[:4], big_box[:4])
  61. if not intersection:
  62. return False
  63. intersection_xmin, intersection_ymin, intersection_xmax, intersection_ymax = intersection
  64. intersection_area = (intersection_xmax - intersection_xmin) * (intersection_ymax - intersection_ymin)
  65. # Check if overlap exceeds threshold
  66. return intersection_area >= overlap_threshold * small_box[4]
  67. def do_overlap(box1, box2):
  68. """Check if two boxes overlap."""
  69. return calculate_intersection(box1[:4], box2[:4]) is not None
  70. def merge_high_iou_tables(table_res_list, layout_res, table_indices, iou_threshold=0.7):
  71. """Merge tables with IoU > threshold."""
  72. if len(table_res_list) < 2:
  73. return table_res_list, table_indices
  74. table_info = [get_coords_and_area(table) for table in table_res_list]
  75. merged = True
  76. while merged:
  77. merged = False
  78. i = 0
  79. while i < len(table_res_list) - 1:
  80. j = i + 1
  81. while j < len(table_res_list):
  82. iou = calculate_iou(table_info[i], table_info[j])
  83. if iou > iou_threshold:
  84. # Merge tables by taking their union
  85. x1_min, y1_min, x1_max, y1_max, _ = table_info[i]
  86. x2_min, y2_min, x2_max, y2_max, _ = table_info[j]
  87. union_xmin = min(x1_min, x2_min)
  88. union_ymin = min(y1_min, y2_min)
  89. union_xmax = max(x1_max, x2_max)
  90. union_ymax = max(y1_max, y2_max)
  91. # Create merged table
  92. merged_table = table_res_list[i].copy()
  93. merged_table['poly'][0] = union_xmin
  94. merged_table['poly'][1] = union_ymin
  95. merged_table['poly'][2] = union_xmax
  96. merged_table['poly'][3] = union_ymin
  97. merged_table['poly'][4] = union_xmax
  98. merged_table['poly'][5] = union_ymax
  99. merged_table['poly'][6] = union_xmin
  100. merged_table['poly'][7] = union_ymax
  101. # Update layout_res
  102. to_remove = [table_indices[j], table_indices[i]]
  103. for idx in sorted(to_remove, reverse=True):
  104. del layout_res[idx]
  105. layout_res.append(merged_table)
  106. # Update tracking lists
  107. table_indices = [k if k < min(to_remove) else
  108. k - 1 if k < max(to_remove) else
  109. k - 2 if k > max(to_remove) else
  110. len(layout_res) - 1
  111. for k in table_indices
  112. if k not in to_remove]
  113. table_indices.append(len(layout_res) - 1)
  114. # Update table lists
  115. table_res_list.pop(j)
  116. table_res_list.pop(i)
  117. table_res_list.append(merged_table)
  118. # Update table_info
  119. table_info = [get_coords_and_area(table) for table in table_res_list]
  120. merged = True
  121. break
  122. j += 1
  123. if merged:
  124. break
  125. i += 1
  126. return table_res_list, table_indices
  127. def filter_nested_tables(table_res_list, overlap_threshold=0.8, area_threshold=0.8):
  128. """Remove big tables containing multiple smaller tables within them."""
  129. if len(table_res_list) < 3:
  130. return table_res_list
  131. table_info = [get_coords_and_area(table) for table in table_res_list]
  132. big_tables_idx = []
  133. for i in range(len(table_res_list)):
  134. # Find tables inside this one
  135. tables_inside = [j for j in range(len(table_res_list))
  136. if i != j and is_inside(table_info[j], table_info[i], overlap_threshold)]
  137. # Continue if there are at least 3 tables inside
  138. if len(tables_inside) >= 3:
  139. # Check if inside tables overlap with each other
  140. tables_overlap = any(do_overlap(table_info[tables_inside[idx1]], table_info[tables_inside[idx2]])
  141. for idx1 in range(len(tables_inside))
  142. for idx2 in range(idx1 + 1, len(tables_inside)))
  143. # If no overlaps, check area condition
  144. if not tables_overlap:
  145. total_inside_area = sum(table_info[j][4] for j in tables_inside)
  146. big_table_area = table_info[i][4]
  147. if total_inside_area > area_threshold * big_table_area:
  148. big_tables_idx.append(i)
  149. return [table for i, table in enumerate(table_res_list) if i not in big_tables_idx]
  150. def remove_overlaps_min_blocks(res_list):
  151. # 重叠block,小的不能直接删除,需要和大的那个合并成一个更大的。
  152. # 删除重叠blocks中较小的那些
  153. need_remove = []
  154. for res1 in res_list:
  155. for res2 in res_list:
  156. if res1 != res2:
  157. overlap_box = get_minbox_if_overlap_by_ratio(
  158. res1['bbox'], res2['bbox'], 0.8
  159. )
  160. if overlap_box is not None:
  161. res_to_remove = next(
  162. (res for res in res_list if res['bbox'] == overlap_box),
  163. None,
  164. )
  165. if (
  166. res_to_remove is not None
  167. and res_to_remove not in need_remove
  168. ):
  169. large_res = res1 if res1 != res_to_remove else res2
  170. x1, y1, x2, y2 = large_res['bbox']
  171. sx1, sy1, sx2, sy2 = res_to_remove['bbox']
  172. x1 = min(x1, sx1)
  173. y1 = min(y1, sy1)
  174. x2 = max(x2, sx2)
  175. y2 = max(y2, sy2)
  176. large_res['bbox'] = [x1, y1, x2, y2]
  177. need_remove.append(res_to_remove)
  178. if len(need_remove) > 0:
  179. for res in need_remove:
  180. res_list.remove(res)
  181. return res_list, need_remove
  182. def get_res_list_from_layout_res(layout_res, iou_threshold=0.7, overlap_threshold=0.8, area_threshold=0.8):
  183. """Extract OCR, table and other regions from layout results."""
  184. ocr_res_list = []
  185. text_res_list = []
  186. table_res_list = []
  187. table_indices = []
  188. single_page_mfdetrec_res = []
  189. # Categorize regions
  190. for i, res in enumerate(layout_res):
  191. category_id = int(res['category_id'])
  192. if category_id in [13, 14]: # Formula regions
  193. single_page_mfdetrec_res.append({
  194. "bbox": [int(res['poly'][0]), int(res['poly'][1]),
  195. int(res['poly'][4]), int(res['poly'][5])],
  196. })
  197. elif category_id in [0, 2, 4, 6, 7, 3]: # OCR regions
  198. ocr_res_list.append(res)
  199. elif category_id == 5: # Table regions
  200. table_res_list.append(res)
  201. table_indices.append(i)
  202. elif category_id in [1]: # Text regions
  203. res['bbox'] = [int(res['poly'][0]), int(res['poly'][1]), int(res['poly'][4]), int(res['poly'][5])]
  204. text_res_list.append(res)
  205. # Process tables: merge high IoU tables first, then filter nested tables
  206. table_res_list, table_indices = merge_high_iou_tables(
  207. table_res_list, layout_res, table_indices, iou_threshold)
  208. filtered_table_res_list = filter_nested_tables(
  209. table_res_list, overlap_threshold, area_threshold)
  210. # Remove filtered out tables from layout_res
  211. if len(filtered_table_res_list) < len(table_res_list):
  212. kept_tables = set(id(table) for table in filtered_table_res_list)
  213. to_remove = [table_indices[i] for i, table in enumerate(table_res_list)
  214. if id(table) not in kept_tables]
  215. for idx in sorted(to_remove, reverse=True):
  216. del layout_res[idx]
  217. # Remove overlaps in OCR and text regions
  218. text_res_list, need_remove = remove_overlaps_min_blocks(text_res_list)
  219. for res in text_res_list:
  220. # 将res的poly使用bbox重构
  221. res['poly'] = [res['bbox'][0], res['bbox'][1], res['bbox'][2], res['bbox'][1],
  222. res['bbox'][2], res['bbox'][3], res['bbox'][0], res['bbox'][3]]
  223. # 删除res的bbox
  224. del res['bbox']
  225. ocr_res_list.extend(text_res_list)
  226. if len(need_remove) > 0:
  227. for res in need_remove:
  228. del res['bbox']
  229. layout_res.remove(res)
  230. return ocr_res_list, filtered_table_res_list, single_page_mfdetrec_res
  231. def clean_memory(device='cuda'):
  232. if device == 'cuda':
  233. if torch.cuda.is_available():
  234. torch.cuda.empty_cache()
  235. torch.cuda.ipc_collect()
  236. elif str(device).startswith("npu"):
  237. import torch_npu
  238. if torch_npu.npu.is_available():
  239. torch_npu.npu.empty_cache()
  240. elif str(device).startswith("mps"):
  241. torch.mps.empty_cache()
  242. gc.collect()
  243. def clean_vram(device, vram_threshold=8):
  244. total_memory = get_vram(device)
  245. if total_memory and total_memory <= vram_threshold:
  246. gc_start = time.time()
  247. clean_memory(device)
  248. gc_time = round(time.time() - gc_start, 2)
  249. logger.info(f"gc time: {gc_time}")
  250. def get_vram(device):
  251. if torch.cuda.is_available() and str(device).startswith("cuda"):
  252. total_memory = torch.cuda.get_device_properties(device).total_memory / (1024 ** 3) # 将字节转换为 GB
  253. return total_memory
  254. elif str(device).startswith("npu"):
  255. import torch_npu
  256. if torch_npu.npu.is_available():
  257. total_memory = torch_npu.npu.get_device_properties(device).total_memory / (1024 ** 3) # 转为 GB
  258. return total_memory
  259. else:
  260. return None