MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。 MinerU诞生于书生-浦语的预训练过程中,我们将会集中精力解决科技文献中的符号转化问题,希望在大模型时代为科技发展做出贡献。
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
如果遇到任何安装问题,请先查询 FAQ
如果遇到解析效果不及预期,参考 Known Issue 有3种不同方式可以体验MinerU的效果:⚠️安装前必看——软硬件环境支持说明
为了确保项目的稳定性和可靠性,我们在开发过程中仅对特定的软硬件环境进行优化和测试。这样当用户在推荐的系统配置上部署和运行项目时,能够获得最佳的性能表现和最少的兼容性问题。
通过集中资源和精力于主线环境,我们团队能够更高效地解决潜在的BUG,及时开发新功能。
在非主线环境中,由于硬件、软件配置的多样性,以及第三方依赖项的兼容性问题,我们无法100%保证项目的完全可用性。因此,对于希望在非推荐环境中使用本项目的用户,我们建议先仔细阅读文档以及FAQ,大多数问题已经在FAQ中有对应的解决方案,除此之外我们鼓励社区反馈问题,以便我们能够逐步扩大支持范围。
| 操作系统 | |||||
| Ubuntu 22.04 LTS | Windows 10 / 11 | macOS 11+ | |||
| CPU | x86_64 | x86_64 | x86_64 / arm64 | ||
| 内存 | 大于等于16GB,推荐32G以上 | ||||
| python版本 | 3.10 | ||||
| Nvidia Driver 版本 | latest(专有驱动) | latest | None | ||
| CUDA环境 | 自动安装[12.1(pytorch)+11.8(paddle)] | 11.8(手动安装)+cuDNN v8.7.0(手动安装) | None | ||
| GPU硬件支持列表 | 最低要求 8G+显存 | 3060ti/3070/3080/3080ti/4060/4070/4070ti 8G显存仅可开启lavout和公式识别加速 |
None | ||
| 推荐配置 16G+显存 | 3090/3090ti/4070tisuper/4080/4090 16G及以上可以同时开启layout,公式识别和ocr加速 |
||||
pip install magic-pdf[full]==0.6.2b1 detectron2 --extra-index-url https://wheels.myhloli.com -i https://pypi.tuna.tsinghua.edu.cn/simple
❗️已收到多起由于镜像源和依赖冲突问题导致安装了错误版本软件包的反馈,请务必安装完成后通过以下命令验证版本是否正确
> magic-pdf --version > ``` > 如版本低于0.6.2b1,请提交issue进行反馈。 ### 使用GPU - [Ubuntu22.04LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_zh_CN.md) - [Windows10/11 + GPU](docs/README_Windows_CUDA_Acceleration_zh_CN.md) ## 使用 ### 命令行bash magic-pdf --help Usage: magic-pdf [OPTIONS]
Options: -v, --version display the version and exit -p, --path PATH local pdf filepath or directory [required] -o, --output-dir TEXT output local directory -m, --method [ocr|txt|auto] the method for parsing pdf.
ocr: using ocr technique to extract information from pdf,
txt: suitable for the text-based pdf only and outperform ocr,
auto: automatically choose the best method for parsing pdf
from ocr and txt.
without method specified, auto will be used by default.
--help Show this message and exit.
magic-pdf -v
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
其中 `{some_pdf}` 可以是单个pdf文件,也可以是一个包含多个pdf文件的目录。
运行完命令后输出的结果会保存在`{some_output_dir}`目录下, 输出的文件列表如下
text ├── some_pdf.md # markdown 文件 ├── images # 存放图片目录 ├── layout.pdf # layout 绘图 ├── middle.json # minerU 中间处理结果 ├── model.json # 模型推理结果 ├── origin.pdf # 原 pdf 文件 └── spans.pdf # 最小粒度的bbox位置信息绘图
更多有关输出文件的信息,请参考[输出文件说明](docs/output_file_zh_cn.md)
### API
处理本地磁盘上的文件
python image_writer = DiskReaderWriter(local_image_dir) image_dir = str(os.path.basename(local_image_dir)) jso_useful_key = {"_pdf_type": "", "model_list": []} pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) pipe.pipe_classify() pipe.pipe_analyze() pipe.pipe_parse() md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
处理对象存储上的文件
python s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint) image_dir = "s3://img_bucket/" s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir) pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN) jso_useful_key = {"_pdf_type": "", "model_list": []} pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli) pipe.pipe_classify() pipe.pipe_analyze() pipe.pipe_parse() md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
详细实现可参考
- [demo.py 最简单的处理方式](demo/demo.py)
- [magic_pdf_parse_main.py 能够更清晰看到处理流程](demo/magic_pdf_parse_main.py)
### 二次开发
TODO
# TODO
- [ ] 基于语义的阅读顺序
- [ ] 正文中列表识别
- [ ] 正文中代码块识别
- [ ] 目录识别
- [x] 表格识别
- [ ] 化学式识别
- [ ] 几何图形识别
# Known Issue
- 阅读顺序基于规则的分割,在一些情况下会乱序
- 列表、代码块、目录在layout模型里还没有支持
- 漫画书、艺术图册、小学教材、习题尚不能很好解析
- 在一些公式密集的PDF上强制启用OCR效果会更好
好消息是,这些我们正在努力实现!
# FAQ
[常见问题](docs/FAQ_zh_cn.md)
[FAQ](docs/FAQ.md)
# All Thanks To Our Contributors
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
<img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>
# License Information
[LICENSE.md](LICENSE.md)
The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility.
# Acknowledgments
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy) 🔥🔥🔥
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
# Citation
bibtex @article{he2024opendatalab, title={Opendatalab: Empowering general artificial intelligence with open datasets}, author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua}, journal={arXiv preprint arXiv:2407.13773}, year={2024} }
@misc{2024mineru,
title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
author={MinerU Contributors},
howpublished = {\url{https://github.com/opendatalab/MinerU}},
year={2024}
} ```
Magic-Doc Fast speed ppt/pptx/doc/docx/pdf extraction tool
Magic-HTML Mixed web page extraction tool