pdf_parse_union_core_v2.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. import copy
  2. import os
  3. import statistics
  4. import time
  5. from typing import List
  6. import torch
  7. import fitz
  8. from loguru import logger
  9. from magic_pdf.config.enums import SupportedPdfParseMethod
  10. from magic_pdf.config.ocr_content_type import BlockType, ContentType
  11. from magic_pdf.data.dataset import Dataset, PageableData
  12. from magic_pdf.libs.boxbase import calculate_overlap_area_in_bbox1_area_ratio
  13. from magic_pdf.libs.clean_memory import clean_memory
  14. from magic_pdf.libs.config_reader import get_local_layoutreader_model_dir
  15. from magic_pdf.libs.convert_utils import dict_to_list
  16. from magic_pdf.libs.hash_utils import compute_md5
  17. from magic_pdf.libs.pdf_image_tools import cut_image_to_pil_image
  18. from magic_pdf.model.magic_model import MagicModel
  19. os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
  20. os.environ['YOLO_VERBOSE'] = 'False' # disable yolo logger
  21. try:
  22. import torchtext
  23. if torchtext.__version__ >= "0.18.0":
  24. torchtext.disable_torchtext_deprecation_warning()
  25. except ImportError:
  26. pass
  27. from magic_pdf.model.sub_modules.model_init import AtomModelSingleton
  28. from magic_pdf.para.para_split_v3 import para_split
  29. from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
  30. from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
  31. from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split_v2
  32. from magic_pdf.pre_proc.ocr_dict_merge import fill_spans_in_blocks, fix_block_spans_v2, fix_discarded_block
  33. from magic_pdf.pre_proc.ocr_span_list_modify import get_qa_need_list_v2, remove_overlaps_low_confidence_spans, remove_overlaps_min_spans
  34. def __replace_STX_ETX(text_str: str):
  35. """Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks.
  36. Drawback: This issue is only observed in English text; it has not been found in Chinese text so far.
  37. Args:
  38. text_str (str): raw text
  39. Returns:
  40. _type_: replaced text
  41. """ # noqa: E501
  42. if text_str:
  43. s = text_str.replace('\u0002', "'")
  44. s = s.replace('\u0003', "'")
  45. return s
  46. return text_str
  47. def chars_to_content(span):
  48. # 检查span中的char是否为空
  49. if len(span['chars']) == 0:
  50. pass
  51. # span['content'] = ''
  52. else:
  53. # 先给chars按char['bbox']的中心点的x坐标排序
  54. span['chars'] = sorted(span['chars'], key=lambda x: (x['bbox'][0] + x['bbox'][2]) / 2)
  55. # 求char的平均宽度
  56. char_width_sum = sum([char['bbox'][2] - char['bbox'][0] for char in span['chars']])
  57. char_avg_width = char_width_sum / len(span['chars'])
  58. content = ''
  59. for char in span['chars']:
  60. # 如果下一个char的x0和上一个char的x1距离超过一个字符宽度,则需要在中间插入一个空格
  61. if char['bbox'][0] - span['chars'][span['chars'].index(char) - 1]['bbox'][2] > char_avg_width:
  62. content += ' '
  63. content += char['c']
  64. span['content'] = __replace_STX_ETX(content)
  65. del span['chars']
  66. LINE_STOP_FLAG = ('.', '!', '?', '。', '!', '?', ')', ')', '"', '”', ':', ':', ';', ';', ']', '】', '}', '}', '>', '》', '、', ',', ',', '-', '—', '–',)
  67. def fill_char_in_spans(spans, all_chars):
  68. for char in all_chars:
  69. for span in spans:
  70. # 判断char是否属于LINE_STOP_FLAG
  71. if char['c'] in LINE_STOP_FLAG:
  72. char_is_line_stop_flag = True
  73. else:
  74. char_is_line_stop_flag = False
  75. if calculate_char_in_span(char['bbox'], span['bbox'], char_is_line_stop_flag):
  76. span['chars'].append(char)
  77. break
  78. empty_spans = []
  79. for span in spans:
  80. chars_to_content(span)
  81. # 有的span中虽然没有字但有一两个空的占位符,用宽高和content长度过滤
  82. if len(span['content']) * span['height'] < span['width'] * 0.5:
  83. # logger.info(f"maybe empty span: {len(span['content'])}, {span['height']}, {span['width']}")
  84. empty_spans.append(span)
  85. del span['height'], span['width']
  86. return empty_spans
  87. # 使用鲁棒性更强的中心点坐标判断
  88. def calculate_char_in_span(char_bbox, span_bbox, char_is_line_stop_flag):
  89. char_center_x = (char_bbox[0] + char_bbox[2]) / 2
  90. char_center_y = (char_bbox[1] + char_bbox[3]) / 2
  91. span_center_y = (span_bbox[1] + span_bbox[3]) / 2
  92. span_height = span_bbox[3] - span_bbox[1]
  93. if (
  94. span_bbox[0] < char_center_x < span_bbox[2]
  95. and span_bbox[1] < char_center_y < span_bbox[3]
  96. and abs(char_center_y - span_center_y) < span_height / 4 # 字符的中轴和span的中轴高度差不能超过1/4span高度
  97. ):
  98. return True
  99. else:
  100. # 如果char是LINE_STOP_FLAG,就不用中心点判定,换一种方案(左边界在span区域内,高度判定和之前逻辑一致)
  101. # 主要是给结尾符号一个进入span的机会,这个char还应该离span右边界较近
  102. if char_is_line_stop_flag:
  103. if (
  104. (span_bbox[2] - span_height) < char_bbox[0] < span_bbox[2]
  105. and char_center_x > span_bbox[0]
  106. and span_bbox[1] < char_center_y < span_bbox[3]
  107. and abs(char_center_y - span_center_y) < span_height / 4
  108. ):
  109. return True
  110. else:
  111. return False
  112. def txt_spans_extract_v2(pdf_page, spans, all_bboxes, all_discarded_blocks, lang):
  113. text_blocks_raw = pdf_page.get_text('rawdict', flags=fitz.TEXTFLAGS_TEXT)['blocks']
  114. all_pymu_chars = []
  115. for block in text_blocks_raw:
  116. for line in block['lines']:
  117. cosine, sine = line['dir']
  118. if abs (cosine) < 0.9 or abs(sine) > 0.1:
  119. continue
  120. for span in line['spans']:
  121. all_pymu_chars.extend(span['chars'])
  122. # 计算所有sapn的高度的中位数
  123. span_height_list = []
  124. for span in spans:
  125. if span['type'] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table]:
  126. continue
  127. span_height = span['bbox'][3] - span['bbox'][1]
  128. span['height'] = span_height
  129. span['width'] = span['bbox'][2] - span['bbox'][0]
  130. span_height_list.append(span_height)
  131. if len(span_height_list) == 0:
  132. return spans
  133. else:
  134. median_span_height = statistics.median(span_height_list)
  135. useful_spans = []
  136. unuseful_spans = []
  137. # 纵向span的两个特征:1. 高度超过多个line 2. 高宽比超过某个值
  138. vertical_spans = []
  139. for span in spans:
  140. if span['type'] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table]:
  141. continue
  142. for block in all_bboxes + all_discarded_blocks:
  143. if block[7] in [BlockType.ImageBody, BlockType.TableBody, BlockType.InterlineEquation]:
  144. continue
  145. if calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], block[0:4]) > 0.5:
  146. if span['height'] > median_span_height * 3 and span['height'] > span['width'] * 3:
  147. vertical_spans.append(span)
  148. elif block in all_bboxes:
  149. useful_spans.append(span)
  150. else:
  151. unuseful_spans.append(span)
  152. break
  153. """垂直的span框直接用pymu的line进行填充"""
  154. if len(vertical_spans) > 0:
  155. text_blocks = pdf_page.get_text('dict', flags=fitz.TEXTFLAGS_TEXT)['blocks']
  156. all_pymu_lines = []
  157. for block in text_blocks:
  158. for line in block['lines']:
  159. all_pymu_lines.append(line)
  160. for pymu_line in all_pymu_lines:
  161. for span in vertical_spans:
  162. if calculate_overlap_area_in_bbox1_area_ratio(pymu_line['bbox'], span['bbox']) > 0.5:
  163. for pymu_span in pymu_line['spans']:
  164. span['content'] += pymu_span['text']
  165. break
  166. for span in vertical_spans:
  167. if len(span['content']) == 0:
  168. spans.remove(span)
  169. """水平的span框如果没有char则用ocr进行填充"""
  170. new_spans = []
  171. for span in useful_spans + unuseful_spans:
  172. if span['type'] in [ContentType.Text]:
  173. span['chars'] = []
  174. new_spans.append(span)
  175. empty_spans = fill_char_in_spans(new_spans, all_pymu_chars)
  176. if len(empty_spans) > 0:
  177. # 初始化ocr模型
  178. atom_model_manager = AtomModelSingleton()
  179. ocr_model = atom_model_manager.get_atom_model(
  180. atom_model_name="ocr",
  181. ocr_show_log=False,
  182. det_db_box_thresh=0.3,
  183. lang=lang
  184. )
  185. for span in empty_spans:
  186. # 对span的bbox截图再ocr
  187. span_img = cut_image_to_pil_image(span['bbox'], pdf_page, mode="cv2")
  188. ocr_res = ocr_model.ocr(span_img, det=False)
  189. if ocr_res and len(ocr_res) > 0:
  190. if len(ocr_res[0]) > 0:
  191. ocr_text, ocr_score = ocr_res[0][0]
  192. # logger.info(f"ocr_text: {ocr_text}, ocr_score: {ocr_score}")
  193. if ocr_score > 0.5 and len(ocr_text) > 0:
  194. span['content'] = ocr_text
  195. span['score'] = ocr_score
  196. else:
  197. spans.remove(span)
  198. return spans
  199. def replace_text_span(pymu_spans, ocr_spans):
  200. return list(filter(lambda x: x['type'] != ContentType.Text, ocr_spans)) + pymu_spans
  201. def model_init(model_name: str):
  202. from transformers import LayoutLMv3ForTokenClassification
  203. if torch.cuda.is_available():
  204. device = torch.device('cuda')
  205. if torch.cuda.is_bf16_supported():
  206. supports_bfloat16 = True
  207. else:
  208. supports_bfloat16 = False
  209. else:
  210. device = torch.device('cpu')
  211. supports_bfloat16 = False
  212. if model_name == 'layoutreader':
  213. # 检测modelscope的缓存目录是否存在
  214. layoutreader_model_dir = get_local_layoutreader_model_dir()
  215. if os.path.exists(layoutreader_model_dir):
  216. model = LayoutLMv3ForTokenClassification.from_pretrained(
  217. layoutreader_model_dir
  218. )
  219. else:
  220. logger.warning(
  221. 'local layoutreader model not exists, use online model from huggingface'
  222. )
  223. model = LayoutLMv3ForTokenClassification.from_pretrained(
  224. 'hantian/layoutreader'
  225. )
  226. # 检查设备是否支持 bfloat16
  227. if supports_bfloat16:
  228. model.bfloat16()
  229. model.to(device).eval()
  230. else:
  231. logger.error('model name not allow')
  232. exit(1)
  233. return model
  234. class ModelSingleton:
  235. _instance = None
  236. _models = {}
  237. def __new__(cls, *args, **kwargs):
  238. if cls._instance is None:
  239. cls._instance = super().__new__(cls)
  240. return cls._instance
  241. def get_model(self, model_name: str):
  242. if model_name not in self._models:
  243. self._models[model_name] = model_init(model_name=model_name)
  244. return self._models[model_name]
  245. def do_predict(boxes: List[List[int]], model) -> List[int]:
  246. from magic_pdf.model.sub_modules.reading_oreder.layoutreader.helpers import (
  247. boxes2inputs, parse_logits, prepare_inputs)
  248. inputs = boxes2inputs(boxes)
  249. inputs = prepare_inputs(inputs, model)
  250. logits = model(**inputs).logits.cpu().squeeze(0)
  251. return parse_logits(logits, len(boxes))
  252. def cal_block_index(fix_blocks, sorted_bboxes):
  253. if sorted_bboxes is not None:
  254. # 使用layoutreader排序
  255. for block in fix_blocks:
  256. line_index_list = []
  257. if len(block['lines']) == 0:
  258. block['index'] = sorted_bboxes.index(block['bbox'])
  259. else:
  260. for line in block['lines']:
  261. line['index'] = sorted_bboxes.index(line['bbox'])
  262. line_index_list.append(line['index'])
  263. median_value = statistics.median(line_index_list)
  264. block['index'] = median_value
  265. # 删除图表body block中的虚拟line信息, 并用real_lines信息回填
  266. if block['type'] in [BlockType.ImageBody, BlockType.TableBody]:
  267. block['virtual_lines'] = copy.deepcopy(block['lines'])
  268. block['lines'] = copy.deepcopy(block['real_lines'])
  269. del block['real_lines']
  270. else:
  271. # 使用xycut排序
  272. block_bboxes = []
  273. for block in fix_blocks:
  274. block_bboxes.append(block['bbox'])
  275. # 删除图表body block中的虚拟line信息, 并用real_lines信息回填
  276. if block['type'] in [BlockType.ImageBody, BlockType.TableBody]:
  277. block['virtual_lines'] = copy.deepcopy(block['lines'])
  278. block['lines'] = copy.deepcopy(block['real_lines'])
  279. del block['real_lines']
  280. import numpy as np
  281. from magic_pdf.model.sub_modules.reading_oreder.layoutreader.xycut import \
  282. recursive_xy_cut
  283. random_boxes = np.array(block_bboxes)
  284. np.random.shuffle(random_boxes)
  285. res = []
  286. recursive_xy_cut(np.asarray(random_boxes).astype(int), np.arange(len(block_bboxes)), res)
  287. assert len(res) == len(block_bboxes)
  288. sorted_boxes = random_boxes[np.array(res)].tolist()
  289. for i, block in enumerate(fix_blocks):
  290. block['index'] = sorted_boxes.index(block['bbox'])
  291. # 生成line index
  292. sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
  293. line_inedx = 1
  294. for block in sorted_blocks:
  295. for line in block['lines']:
  296. line['index'] = line_inedx
  297. line_inedx += 1
  298. return fix_blocks
  299. def insert_lines_into_block(block_bbox, line_height, page_w, page_h):
  300. # block_bbox是一个元组(x0, y0, x1, y1),其中(x0, y0)是左下角坐标,(x1, y1)是右上角坐标
  301. x0, y0, x1, y1 = block_bbox
  302. block_height = y1 - y0
  303. block_weight = x1 - x0
  304. # 如果block高度小于n行正文,则直接返回block的bbox
  305. if line_height * 3 < block_height:
  306. if (
  307. block_height > page_h * 0.25 and page_w * 0.5 > block_weight > page_w * 0.25
  308. ): # 可能是双列结构,可以切细点
  309. lines = int(block_height / line_height) + 1
  310. else:
  311. # 如果block的宽度超过0.4页面宽度,则将block分成3行(是一种复杂布局,图不能切的太细)
  312. if block_weight > page_w * 0.4:
  313. line_height = (y1 - y0) / 3
  314. lines = 3
  315. elif block_weight > page_w * 0.25: # (可能是三列结构,也切细点)
  316. lines = int(block_height / line_height) + 1
  317. else: # 判断长宽比
  318. if block_height / block_weight > 1.2: # 细长的不分
  319. return [[x0, y0, x1, y1]]
  320. else: # 不细长的还是分成两行
  321. line_height = (y1 - y0) / 2
  322. lines = 2
  323. # 确定从哪个y位置开始绘制线条
  324. current_y = y0
  325. # 用于存储线条的位置信息[(x0, y), ...]
  326. lines_positions = []
  327. for i in range(lines):
  328. lines_positions.append([x0, current_y, x1, current_y + line_height])
  329. current_y += line_height
  330. return lines_positions
  331. else:
  332. return [[x0, y0, x1, y1]]
  333. def sort_lines_by_model(fix_blocks, page_w, page_h, line_height):
  334. page_line_list = []
  335. for block in fix_blocks:
  336. if block['type'] in [
  337. BlockType.Text, BlockType.Title, BlockType.InterlineEquation,
  338. BlockType.ImageCaption, BlockType.ImageFootnote,
  339. BlockType.TableCaption, BlockType.TableFootnote
  340. ]:
  341. if len(block['lines']) == 0:
  342. bbox = block['bbox']
  343. lines = insert_lines_into_block(bbox, line_height, page_w, page_h)
  344. for line in lines:
  345. block['lines'].append({'bbox': line, 'spans': []})
  346. page_line_list.extend(lines)
  347. else:
  348. for line in block['lines']:
  349. bbox = line['bbox']
  350. page_line_list.append(bbox)
  351. elif block['type'] in [BlockType.ImageBody, BlockType.TableBody]:
  352. bbox = block['bbox']
  353. block['real_lines'] = copy.deepcopy(block['lines'])
  354. lines = insert_lines_into_block(bbox, line_height, page_w, page_h)
  355. block['lines'] = []
  356. for line in lines:
  357. block['lines'].append({'bbox': line, 'spans': []})
  358. page_line_list.extend(lines)
  359. if len(page_line_list) > 200: # layoutreader最高支持512line
  360. return None
  361. # 使用layoutreader排序
  362. x_scale = 1000.0 / page_w
  363. y_scale = 1000.0 / page_h
  364. boxes = []
  365. # logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
  366. for left, top, right, bottom in page_line_list:
  367. if left < 0:
  368. logger.warning(
  369. f'left < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
  370. ) # noqa: E501
  371. left = 0
  372. if right > page_w:
  373. logger.warning(
  374. f'right > page_w, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
  375. ) # noqa: E501
  376. right = page_w
  377. if top < 0:
  378. logger.warning(
  379. f'top < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
  380. ) # noqa: E501
  381. top = 0
  382. if bottom > page_h:
  383. logger.warning(
  384. f'bottom > page_h, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}'
  385. ) # noqa: E501
  386. bottom = page_h
  387. left = round(left * x_scale)
  388. top = round(top * y_scale)
  389. right = round(right * x_scale)
  390. bottom = round(bottom * y_scale)
  391. assert (
  392. 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
  393. ), f'Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}' # noqa: E126, E121
  394. boxes.append([left, top, right, bottom])
  395. model_manager = ModelSingleton()
  396. model = model_manager.get_model('layoutreader')
  397. with torch.no_grad():
  398. orders = do_predict(boxes, model)
  399. sorted_bboxes = [page_line_list[i] for i in orders]
  400. return sorted_bboxes
  401. def get_line_height(blocks):
  402. page_line_height_list = []
  403. for block in blocks:
  404. if block['type'] in [
  405. BlockType.Text, BlockType.Title,
  406. BlockType.ImageCaption, BlockType.ImageFootnote,
  407. BlockType.TableCaption, BlockType.TableFootnote
  408. ]:
  409. for line in block['lines']:
  410. bbox = line['bbox']
  411. page_line_height_list.append(int(bbox[3] - bbox[1]))
  412. if len(page_line_height_list) > 0:
  413. return statistics.median(page_line_height_list)
  414. else:
  415. return 10
  416. def process_groups(groups, body_key, caption_key, footnote_key):
  417. body_blocks = []
  418. caption_blocks = []
  419. footnote_blocks = []
  420. for i, group in enumerate(groups):
  421. group[body_key]['group_id'] = i
  422. body_blocks.append(group[body_key])
  423. for caption_block in group[caption_key]:
  424. caption_block['group_id'] = i
  425. caption_blocks.append(caption_block)
  426. for footnote_block in group[footnote_key]:
  427. footnote_block['group_id'] = i
  428. footnote_blocks.append(footnote_block)
  429. return body_blocks, caption_blocks, footnote_blocks
  430. def process_block_list(blocks, body_type, block_type):
  431. indices = [block['index'] for block in blocks]
  432. median_index = statistics.median(indices)
  433. body_bbox = next((block['bbox'] for block in blocks if block.get('type') == body_type), [])
  434. return {
  435. 'type': block_type,
  436. 'bbox': body_bbox,
  437. 'blocks': blocks,
  438. 'index': median_index,
  439. }
  440. def revert_group_blocks(blocks):
  441. image_groups = {}
  442. table_groups = {}
  443. new_blocks = []
  444. for block in blocks:
  445. if block['type'] in [BlockType.ImageBody, BlockType.ImageCaption, BlockType.ImageFootnote]:
  446. group_id = block['group_id']
  447. if group_id not in image_groups:
  448. image_groups[group_id] = []
  449. image_groups[group_id].append(block)
  450. elif block['type'] in [BlockType.TableBody, BlockType.TableCaption, BlockType.TableFootnote]:
  451. group_id = block['group_id']
  452. if group_id not in table_groups:
  453. table_groups[group_id] = []
  454. table_groups[group_id].append(block)
  455. else:
  456. new_blocks.append(block)
  457. for group_id, blocks in image_groups.items():
  458. new_blocks.append(process_block_list(blocks, BlockType.ImageBody, BlockType.Image))
  459. for group_id, blocks in table_groups.items():
  460. new_blocks.append(process_block_list(blocks, BlockType.TableBody, BlockType.Table))
  461. return new_blocks
  462. def remove_outside_spans(spans, all_bboxes, all_discarded_blocks):
  463. def get_block_bboxes(blocks, block_type_list):
  464. return [block[0:4] for block in blocks if block[7] in block_type_list]
  465. image_bboxes = get_block_bboxes(all_bboxes, [BlockType.ImageBody])
  466. table_bboxes = get_block_bboxes(all_bboxes, [BlockType.TableBody])
  467. other_block_type = []
  468. for block_type in BlockType.__dict__.values():
  469. if not isinstance(block_type, str):
  470. continue
  471. if block_type not in [BlockType.ImageBody, BlockType.TableBody]:
  472. other_block_type.append(block_type)
  473. other_block_bboxes = get_block_bboxes(all_bboxes, other_block_type)
  474. discarded_block_bboxes = get_block_bboxes(all_discarded_blocks, [BlockType.Discarded])
  475. new_spans = []
  476. for span in spans:
  477. span_bbox = span['bbox']
  478. span_type = span['type']
  479. if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.4 for block_bbox in
  480. discarded_block_bboxes):
  481. new_spans.append(span)
  482. continue
  483. if span_type == ContentType.Image:
  484. if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
  485. image_bboxes):
  486. new_spans.append(span)
  487. elif span_type == ContentType.Table:
  488. if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
  489. table_bboxes):
  490. new_spans.append(span)
  491. else:
  492. if any(calculate_overlap_area_in_bbox1_area_ratio(span_bbox, block_bbox) > 0.5 for block_bbox in
  493. other_block_bboxes):
  494. new_spans.append(span)
  495. return new_spans
  496. def parse_page_core(
  497. page_doc: PageableData, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode, lang
  498. ):
  499. need_drop = False
  500. drop_reason = []
  501. """从magic_model对象中获取后面会用到的区块信息"""
  502. img_groups = magic_model.get_imgs_v2(page_id)
  503. table_groups = magic_model.get_tables_v2(page_id)
  504. """对image和table的区块分组"""
  505. img_body_blocks, img_caption_blocks, img_footnote_blocks = process_groups(
  506. img_groups, 'image_body', 'image_caption_list', 'image_footnote_list'
  507. )
  508. table_body_blocks, table_caption_blocks, table_footnote_blocks = process_groups(
  509. table_groups, 'table_body', 'table_caption_list', 'table_footnote_list'
  510. )
  511. discarded_blocks = magic_model.get_discarded(page_id)
  512. text_blocks = magic_model.get_text_blocks(page_id)
  513. title_blocks = magic_model.get_title_blocks(page_id)
  514. inline_equations, interline_equations, interline_equation_blocks = (
  515. magic_model.get_equations(page_id)
  516. )
  517. page_w, page_h = magic_model.get_page_size(page_id)
  518. """将所有区块的bbox整理到一起"""
  519. # interline_equation_blocks参数不够准,后面切换到interline_equations上
  520. interline_equation_blocks = []
  521. if len(interline_equation_blocks) > 0:
  522. all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
  523. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  524. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  525. discarded_blocks,
  526. text_blocks,
  527. title_blocks,
  528. interline_equation_blocks,
  529. page_w,
  530. page_h,
  531. )
  532. else:
  533. all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
  534. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  535. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  536. discarded_blocks,
  537. text_blocks,
  538. title_blocks,
  539. interline_equations,
  540. page_w,
  541. page_h,
  542. )
  543. """获取所有的spans信息"""
  544. spans = magic_model.get_all_spans(page_id)
  545. """在删除重复span之前,应该通过image_body和table_body的block过滤一下image和table的span"""
  546. """顺便删除大水印并保留abandon的span"""
  547. spans = remove_outside_spans(spans, all_bboxes, all_discarded_blocks)
  548. """删除重叠spans中置信度较低的那些"""
  549. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  550. """删除重叠spans中较小的那些"""
  551. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  552. """根据parse_mode,构造spans,主要是文本类的字符填充"""
  553. if parse_mode == SupportedPdfParseMethod.TXT:
  554. """使用新版本的混合ocr方案"""
  555. spans = txt_spans_extract_v2(page_doc, spans, all_bboxes, all_discarded_blocks, lang)
  556. elif parse_mode == SupportedPdfParseMethod.OCR:
  557. pass
  558. else:
  559. raise Exception('parse_mode must be txt or ocr')
  560. """先处理不需要排版的discarded_blocks"""
  561. discarded_block_with_spans, spans = fill_spans_in_blocks(
  562. all_discarded_blocks, spans, 0.4
  563. )
  564. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  565. """如果当前页面没有有效的bbox则跳过"""
  566. if len(all_bboxes) == 0:
  567. logger.warning(f'skip this page, not found useful bbox, page_id: {page_id}')
  568. return ocr_construct_page_component_v2(
  569. [],
  570. [],
  571. page_id,
  572. page_w,
  573. page_h,
  574. [],
  575. [],
  576. [],
  577. interline_equations,
  578. fix_discarded_blocks,
  579. need_drop,
  580. drop_reason,
  581. )
  582. """对image和table截图"""
  583. spans = ocr_cut_image_and_table(
  584. spans, page_doc, page_id, pdf_bytes_md5, imageWriter
  585. )
  586. """span填充进block"""
  587. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.5)
  588. """对block进行fix操作"""
  589. fix_blocks = fix_block_spans_v2(block_with_spans)
  590. """获取所有line并计算正文line的高度"""
  591. line_height = get_line_height(fix_blocks)
  592. """获取所有line并对line排序"""
  593. sorted_bboxes = sort_lines_by_model(fix_blocks, page_w, page_h, line_height)
  594. """根据line的中位数算block的序列关系"""
  595. fix_blocks = cal_block_index(fix_blocks, sorted_bboxes)
  596. """将image和table的block还原回group形式参与后续流程"""
  597. fix_blocks = revert_group_blocks(fix_blocks)
  598. """重排block"""
  599. sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
  600. """获取QA需要外置的list"""
  601. images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks)
  602. """构造pdf_info_dict"""
  603. page_info = ocr_construct_page_component_v2(
  604. sorted_blocks,
  605. [],
  606. page_id,
  607. page_w,
  608. page_h,
  609. [],
  610. images,
  611. tables,
  612. interline_equations,
  613. fix_discarded_blocks,
  614. need_drop,
  615. drop_reason,
  616. )
  617. return page_info
  618. def pdf_parse_union(
  619. dataset: Dataset,
  620. model_list,
  621. imageWriter,
  622. parse_mode,
  623. start_page_id=0,
  624. end_page_id=None,
  625. debug_mode=False,
  626. lang=None,
  627. ):
  628. pdf_bytes_md5 = compute_md5(dataset.data_bits())
  629. """初始化空的pdf_info_dict"""
  630. pdf_info_dict = {}
  631. """用model_list和docs对象初始化magic_model"""
  632. magic_model = MagicModel(model_list, dataset)
  633. """根据输入的起始范围解析pdf"""
  634. # end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
  635. end_page_id = (
  636. end_page_id
  637. if end_page_id is not None and end_page_id >= 0
  638. else len(dataset) - 1
  639. )
  640. if end_page_id > len(dataset) - 1:
  641. logger.warning('end_page_id is out of range, use pdf_docs length')
  642. end_page_id = len(dataset) - 1
  643. """初始化启动时间"""
  644. start_time = time.time()
  645. for page_id, page in enumerate(dataset):
  646. """debug时输出每页解析的耗时."""
  647. if debug_mode:
  648. time_now = time.time()
  649. logger.info(
  650. f'page_id: {page_id}, last_page_cost_time: {round(time.time() - start_time, 2)}'
  651. )
  652. start_time = time_now
  653. """解析pdf中的每一页"""
  654. if start_page_id <= page_id <= end_page_id:
  655. page_info = parse_page_core(
  656. page, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode, lang
  657. )
  658. else:
  659. page_info = page.get_page_info()
  660. page_w = page_info.w
  661. page_h = page_info.h
  662. page_info = ocr_construct_page_component_v2(
  663. [], [], page_id, page_w, page_h, [], [], [], [], [], True, 'skip page'
  664. )
  665. pdf_info_dict[f'page_{page_id}'] = page_info
  666. """分段"""
  667. para_split(pdf_info_dict)
  668. """dict转list"""
  669. pdf_info_list = dict_to_list(pdf_info_dict)
  670. new_pdf_info_dict = {
  671. 'pdf_info': pdf_info_list,
  672. }
  673. clean_memory()
  674. return new_pdf_info_dict
  675. if __name__ == '__main__':
  676. pass