| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- import fitz
- import cv2
- from PIL import Image
- import numpy as np
- from magic_pdf.model.model_list import MODEL
- from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
- def dict_compare(d1, d2):
- return d1.items() == d2.items()
- def remove_duplicates_dicts(lst):
- unique_dicts = []
- for dict_item in lst:
- if not any(
- dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
- ):
- unique_dicts.append(dict_item)
- return unique_dicts
- def load_images_from_pdf(pdf_bytes: bytes, dpi=200) -> list:
- images = []
- with fitz.open("pdf", pdf_bytes) as doc:
- for index in range(0, doc.page_count):
- page = doc[index]
- mat = fitz.Matrix(dpi / 72, dpi / 72)
- pm = page.get_pixmap(matrix=mat, alpha=False)
- # if width or height > 2000 pixels, don't enlarge the image
- # if pm.width > 2000 or pm.height > 2000:
- # pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
- img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
- img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
- img_dict = {"img": img, "width": pm.width, "height": pm.height}
- images.append(img_dict)
- return images
- def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False, model=MODEL.Paddle):
- images = load_images_from_pdf(pdf_bytes)
- custom_model = None
- if model == MODEL.Paddle:
- custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log)
- else:
- pass
- model_json = []
- for index, img_dict in enumerate(images):
- img = img_dict["img"]
- page_width = img_dict["width"]
- page_height = img_dict["height"]
- result = custom_model(img)
- page_info = {"page_no": index, "height": page_height, "width": page_width}
- page_dict = {"layout_dets": result, "page_info": page_info}
- model_json.append(page_dict)
- return model_json
|