magic_model.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import (
  12. _is_in,
  13. bbox_relative_pos,
  14. bbox_distance,
  15. _is_part_overlap,
  16. calculate_overlap_area_in_bbox1_area_ratio, calculate_iou,
  17. )
  18. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  19. CAPATION_OVERLAP_AREA_RATIO = 0.6
  20. class MagicModel:
  21. """
  22. 每个函数没有得到元素的时候返回空list
  23. """
  24. def __fix_axis(self):
  25. for model_page_info in self.__model_list:
  26. need_remove_list = []
  27. page_no = model_page_info["page_info"]["page_no"]
  28. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  29. model_page_info, self.__docs[page_no]
  30. )
  31. layout_dets = model_page_info["layout_dets"]
  32. for layout_det in layout_dets:
  33. if layout_det.get("bbox") is not None:
  34. # 兼容直接输出bbox的模型数据,如paddle
  35. x0, y0, x1, y1 = layout_det["bbox"]
  36. else:
  37. # 兼容直接输出poly的模型数据,如xxx
  38. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  39. bbox = [
  40. int(x0 / horizontal_scale_ratio),
  41. int(y0 / vertical_scale_ratio),
  42. int(x1 / horizontal_scale_ratio),
  43. int(y1 / vertical_scale_ratio),
  44. ]
  45. layout_det["bbox"] = bbox
  46. # 删除高度或者宽度小于等于0的spans
  47. if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
  48. need_remove_list.append(layout_det)
  49. for need_remove in need_remove_list:
  50. layout_dets.remove(need_remove)
  51. def __fix_by_remove_low_confidence(self):
  52. for model_page_info in self.__model_list:
  53. need_remove_list = []
  54. layout_dets = model_page_info["layout_dets"]
  55. for layout_det in layout_dets:
  56. if layout_det["score"] <= 0.05:
  57. need_remove_list.append(layout_det)
  58. else:
  59. continue
  60. for need_remove in need_remove_list:
  61. layout_dets.remove(need_remove)
  62. def __fix_by_remove_high_iou_and_low_confidence(self):
  63. for model_page_info in self.__model_list:
  64. need_remove_list = []
  65. layout_dets = model_page_info["layout_dets"]
  66. for layout_det1 in layout_dets:
  67. for layout_det2 in layout_dets:
  68. if layout_det1 == layout_det2:
  69. continue
  70. if layout_det1["category_id"] in [0,1,2,3,4,5,6,7,8,9] and layout_det2["category_id"] in [0,1,2,3,4,5,6,7,8,9]:
  71. if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
  72. if layout_det1['score'] < layout_det2['score']:
  73. layout_det_need_remove = layout_det1
  74. else:
  75. layout_det_need_remove = layout_det2
  76. if layout_det_need_remove not in need_remove_list:
  77. need_remove_list.append(layout_det_need_remove)
  78. else:
  79. continue
  80. else:
  81. continue
  82. for need_remove in need_remove_list:
  83. layout_dets.remove(need_remove)
  84. def __init__(self, model_list: list, docs: fitz.Document):
  85. self.__model_list = model_list
  86. self.__docs = docs
  87. '''为所有模型数据添加bbox信息(缩放,poly->bbox)'''
  88. self.__fix_axis()
  89. '''删除置信度特别低的模型数据(<0.05),提高质量'''
  90. self.__fix_by_remove_low_confidence()
  91. '''删除高iou(>0.9)数据中置信度较低的那个'''
  92. self.__fix_by_remove_high_iou_and_low_confidence()
  93. def __reduct_overlap(self, bboxes):
  94. N = len(bboxes)
  95. keep = [True] * N
  96. for i in range(N):
  97. for j in range(N):
  98. if i == j:
  99. continue
  100. if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
  101. keep[i] = False
  102. return [bboxes[i] for i in range(N) if keep[i]]
  103. def __tie_up_category_by_distance(
  104. self, page_no, subject_category_id, object_category_id
  105. ):
  106. """
  107. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  108. """
  109. ret = []
  110. MAX_DIS_OF_POINT = 10**9 + 7
  111. def expand_bbox(bbox1, bbox2):
  112. x0 = min(bbox1[0], bbox2[0])
  113. y0 = min(bbox1[1], bbox2[1])
  114. x1 = max(bbox1[2], bbox2[2])
  115. y1 = max(bbox1[3], bbox2[3])
  116. return [x0, y0, x1, y1]
  117. def get_bbox_area(bbox):
  118. return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1])
  119. # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
  120. # 再求出筛选出的 subjects 和 object 的最短距离!
  121. def may_find_other_nearest_bbox(subject_idx, object_idx):
  122. ret = float("inf")
  123. x0 = min(
  124. all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
  125. )
  126. y0 = min(
  127. all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
  128. )
  129. x1 = max(
  130. all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
  131. )
  132. y1 = max(
  133. all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
  134. )
  135. object_area = abs(
  136. all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
  137. ) * abs(
  138. all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
  139. )
  140. for i in range(len(all_bboxes)):
  141. if (
  142. i == subject_idx
  143. or all_bboxes[i]["category_id"] != subject_category_id
  144. ):
  145. continue
  146. if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
  147. all_bboxes[i]["bbox"], [x0, y0, x1, y1]
  148. ):
  149. i_area = abs(
  150. all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
  151. ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
  152. if i_area >= object_area:
  153. ret = min(float("inf"), dis[i][object_idx])
  154. return ret
  155. subjects = self.__reduct_overlap(
  156. list(
  157. map(
  158. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  159. filter(
  160. lambda x: x["category_id"] == subject_category_id,
  161. self.__model_list[page_no]["layout_dets"],
  162. ),
  163. )
  164. )
  165. )
  166. objects = self.__reduct_overlap(
  167. list(
  168. map(
  169. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  170. filter(
  171. lambda x: x["category_id"] == object_category_id,
  172. self.__model_list[page_no]["layout_dets"],
  173. ),
  174. )
  175. )
  176. )
  177. subject_object_relation_map = {}
  178. subjects.sort(
  179. key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
  180. ) # get the distance !
  181. all_bboxes = []
  182. for v in subjects:
  183. all_bboxes.append(
  184. {
  185. "category_id": subject_category_id,
  186. "bbox": v["bbox"],
  187. "score": v["score"],
  188. }
  189. )
  190. for v in objects:
  191. all_bboxes.append(
  192. {
  193. "category_id": object_category_id,
  194. "bbox": v["bbox"],
  195. "score": v["score"],
  196. }
  197. )
  198. N = len(all_bboxes)
  199. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  200. for i in range(N):
  201. for j in range(i):
  202. if (
  203. all_bboxes[i]["category_id"] == subject_category_id
  204. and all_bboxes[j]["category_id"] == subject_category_id
  205. ):
  206. continue
  207. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  208. dis[j][i] = dis[i][j]
  209. used = set()
  210. for i in range(N):
  211. # 求第 i 个 subject 所关联的 object
  212. if all_bboxes[i]["category_id"] != subject_category_id:
  213. continue
  214. seen = set()
  215. candidates = []
  216. arr = []
  217. for j in range(N):
  218. pos_flag_count = sum(
  219. list(
  220. map(
  221. lambda x: 1 if x else 0,
  222. bbox_relative_pos(
  223. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  224. ),
  225. )
  226. )
  227. )
  228. if pos_flag_count > 1:
  229. continue
  230. if (
  231. all_bboxes[j]["category_id"] != object_category_id
  232. or j in used
  233. or dis[i][j] == MAX_DIS_OF_POINT
  234. ):
  235. continue
  236. left, right, _, _ = bbox_relative_pos(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
  237. if left or right:
  238. one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
  239. else:
  240. one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
  241. if dis[i][j] > one_way_dis:
  242. continue
  243. arr.append((dis[i][j], j))
  244. arr.sort(key=lambda x: x[0])
  245. if len(arr) > 0:
  246. # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
  247. if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
  248. candidates.append(arr[0][1])
  249. seen.add(arr[0][1])
  250. # 已经获取初始种子
  251. for j in set(candidates):
  252. tmp = []
  253. for k in range(i + 1, N):
  254. pos_flag_count = sum(
  255. list(
  256. map(
  257. lambda x: 1 if x else 0,
  258. bbox_relative_pos(
  259. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  260. ),
  261. )
  262. )
  263. )
  264. if pos_flag_count > 1:
  265. continue
  266. if (
  267. all_bboxes[k]["category_id"] != object_category_id
  268. or k in used
  269. or k in seen
  270. or dis[j][k] == MAX_DIS_OF_POINT
  271. or dis[j][k] > dis[i][j]
  272. ):
  273. continue
  274. is_nearest = True
  275. for l in range(i + 1, N):
  276. if l in (j, k) or l in used or l in seen:
  277. continue
  278. if not float_gt(dis[l][k], dis[j][k]):
  279. is_nearest = False
  280. break
  281. if is_nearest:
  282. tmp.append(k)
  283. seen.add(k)
  284. candidates = tmp
  285. if len(candidates) == 0:
  286. break
  287. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  288. # 先扩一下 bbox,
  289. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  290. all_bboxes[i]["bbox"][0]
  291. ]
  292. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  293. all_bboxes[i]["bbox"][1]
  294. ]
  295. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  296. all_bboxes[i]["bbox"][2]
  297. ]
  298. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  299. all_bboxes[i]["bbox"][3]
  300. ]
  301. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  302. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  303. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  304. caption_poses = [
  305. [ox0, oy0, ix0, oy1],
  306. [ox0, oy0, ox1, iy0],
  307. [ox0, iy1, ox1, oy1],
  308. [ix1, oy0, ox1, oy1],
  309. ]
  310. caption_areas = []
  311. for bbox in caption_poses:
  312. embed_arr = []
  313. for idx in seen:
  314. if (
  315. calculate_overlap_area_in_bbox1_area_ratio(
  316. all_bboxes[idx]["bbox"], bbox
  317. )
  318. > CAPATION_OVERLAP_AREA_RATIO
  319. ):
  320. embed_arr.append(idx)
  321. if len(embed_arr) > 0:
  322. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  323. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  324. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  325. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  326. caption_areas.append(
  327. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  328. )
  329. else:
  330. caption_areas.append(0)
  331. subject_object_relation_map[i] = []
  332. if max(caption_areas) > 0:
  333. max_area_idx = caption_areas.index(max(caption_areas))
  334. caption_bbox = caption_poses[max_area_idx]
  335. for j in seen:
  336. if (
  337. calculate_overlap_area_in_bbox1_area_ratio(
  338. all_bboxes[j]["bbox"], caption_bbox
  339. )
  340. > CAPATION_OVERLAP_AREA_RATIO
  341. ):
  342. used.add(j)
  343. subject_object_relation_map[i].append(j)
  344. for i in sorted(subject_object_relation_map.keys()):
  345. result = {
  346. "subject_body": all_bboxes[i]["bbox"],
  347. "all": all_bboxes[i]["bbox"],
  348. "score": all_bboxes[i]["score"],
  349. }
  350. if len(subject_object_relation_map[i]) > 0:
  351. x0 = min(
  352. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  353. )
  354. y0 = min(
  355. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  356. )
  357. x1 = max(
  358. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  359. )
  360. y1 = max(
  361. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  362. )
  363. result["object_body"] = [x0, y0, x1, y1]
  364. result["all"] = [
  365. min(x0, all_bboxes[i]["bbox"][0]),
  366. min(y0, all_bboxes[i]["bbox"][1]),
  367. max(x1, all_bboxes[i]["bbox"][2]),
  368. max(y1, all_bboxes[i]["bbox"][3]),
  369. ]
  370. ret.append(result)
  371. total_subject_object_dis = 0
  372. # 计算已经配对的 distance 距离
  373. for i in subject_object_relation_map.keys():
  374. for j in subject_object_relation_map[i]:
  375. total_subject_object_dis += bbox_distance(
  376. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  377. )
  378. # 计算未匹配的 subject 和 object 的距离(非精确版)
  379. with_caption_subject = set(
  380. [
  381. key
  382. for key in subject_object_relation_map.keys()
  383. if len(subject_object_relation_map[i]) > 0
  384. ]
  385. )
  386. for i in range(N):
  387. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  388. continue
  389. candidates = []
  390. for j in range(N):
  391. if (
  392. all_bboxes[j]["category_id"] != subject_category_id
  393. or j in with_caption_subject
  394. ):
  395. continue
  396. candidates.append((dis[i][j], j))
  397. if len(candidates) > 0:
  398. candidates.sort(key=lambda x: x[0])
  399. total_subject_object_dis += candidates[0][1]
  400. with_caption_subject.add(j)
  401. return ret, total_subject_object_dis
  402. def get_imgs(self, page_no: int): # @许瑞
  403. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  404. return [
  405. {
  406. "bbox": record["all"],
  407. "img_body_bbox": record["subject_body"],
  408. "img_caption_bbox": record.get("object_body", None),
  409. "score": record["score"],
  410. }
  411. for record in records
  412. ]
  413. def get_tables(
  414. self, page_no: int
  415. ) -> list: # 3个坐标, caption, table主体,table-note
  416. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  417. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  418. ret = []
  419. N, M = len(with_captions), len(with_footnotes)
  420. assert N == M
  421. for i in range(N):
  422. record = {
  423. "score": with_captions[i]["score"],
  424. "table_caption_bbox": with_captions[i].get("object_body", None),
  425. "table_body_bbox": with_captions[i]["subject_body"],
  426. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  427. }
  428. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  429. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  430. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  431. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  432. record["bbox"] = [x0, y0, x1, y1]
  433. ret.append(record)
  434. return ret
  435. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  436. inline_equations = self.__get_blocks_by_type(
  437. ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
  438. )
  439. interline_equations = self.__get_blocks_by_type(
  440. ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
  441. )
  442. interline_equations_blocks = self.__get_blocks_by_type(
  443. ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
  444. )
  445. return inline_equations, interline_equations, interline_equations_blocks
  446. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  447. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  448. return blocks
  449. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  450. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  451. return blocks
  452. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  453. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  454. return blocks
  455. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  456. text_spans = []
  457. model_page_info = self.__model_list[page_no]
  458. layout_dets = model_page_info["layout_dets"]
  459. for layout_det in layout_dets:
  460. if layout_det["category_id"] == "15":
  461. span = {
  462. "bbox": layout_det["bbox"],
  463. "content": layout_det["text"],
  464. }
  465. text_spans.append(span)
  466. return text_spans
  467. def get_all_spans(self, page_no: int) -> list:
  468. def remove_duplicate_spans(spans):
  469. new_spans = []
  470. for span in spans:
  471. if not any(span == existing_span for existing_span in new_spans):
  472. new_spans.append(span)
  473. return new_spans
  474. all_spans = []
  475. model_page_info = self.__model_list[page_no]
  476. layout_dets = model_page_info["layout_dets"]
  477. allow_category_id_list = [3, 5, 13, 14, 15]
  478. """当成span拼接的"""
  479. # 3: 'image', # 图片
  480. # 5: 'table', # 表格
  481. # 13: 'inline_equation', # 行内公式
  482. # 14: 'interline_equation', # 行间公式
  483. # 15: 'text', # ocr识别文本
  484. for layout_det in layout_dets:
  485. category_id = layout_det["category_id"]
  486. if category_id in allow_category_id_list:
  487. span = {
  488. "bbox": layout_det["bbox"],
  489. "score": layout_det["score"]
  490. }
  491. if category_id == 3:
  492. span["type"] = ContentType.Image
  493. elif category_id == 5:
  494. span["type"] = ContentType.Table
  495. elif category_id == 13:
  496. span["content"] = layout_det["latex"]
  497. span["type"] = ContentType.InlineEquation
  498. elif category_id == 14:
  499. span["content"] = layout_det["latex"]
  500. span["type"] = ContentType.InterlineEquation
  501. elif category_id == 15:
  502. span["content"] = layout_det["text"]
  503. span["type"] = ContentType.Text
  504. all_spans.append(span)
  505. return remove_duplicate_spans(all_spans)
  506. def get_page_size(self, page_no: int): # 获取页面宽高
  507. # 获取当前页的page对象
  508. page = self.__docs[page_no]
  509. # 获取当前页的宽高
  510. page_w = page.rect.width
  511. page_h = page.rect.height
  512. return page_w, page_h
  513. def __get_blocks_by_type(
  514. self, type: int, page_no: int, extra_col: list[str] = []
  515. ) -> list:
  516. blocks = []
  517. for page_dict in self.__model_list:
  518. layout_dets = page_dict.get("layout_dets", [])
  519. page_info = page_dict.get("page_info", {})
  520. page_number = page_info.get("page_no", -1)
  521. if page_no != page_number:
  522. continue
  523. for item in layout_dets:
  524. category_id = item.get("category_id", -1)
  525. bbox = item.get("bbox", None)
  526. if category_id == type:
  527. block = {
  528. "bbox": bbox,
  529. "score": item.get("score"),
  530. }
  531. for col in extra_col:
  532. block[col] = item.get(col, None)
  533. blocks.append(block)
  534. return blocks
  535. def get_model_list(self, page_no):
  536. return self.__model_list[page_no]
  537. if __name__ == "__main__":
  538. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  539. if 0:
  540. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  541. model_file_path = r"linshixuqiu\19983-00_new.json"
  542. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  543. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  544. model_list = json.loads(model_json_txt)
  545. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  546. img_bucket_path = "imgs"
  547. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  548. pdf_docs = fitz.open("pdf", pdf_bytes)
  549. magic_model = MagicModel(model_list, pdf_docs)
  550. if 1:
  551. model_list = json.loads(
  552. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  553. )
  554. pdf_bytes = drw.read(
  555. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  556. )
  557. pdf_docs = fitz.open("pdf", pdf_bytes)
  558. magic_model = MagicModel(model_list, pdf_docs)
  559. for i in range(7):
  560. print(magic_model.get_imgs(i))