user_api.py 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. """
  2. 用户输入:
  3. model数组,每个元素代表一个页面
  4. pdf在s3的路径
  5. 截图保存的s3位置
  6. 然后:
  7. 1)根据s3路径,调用spark集群的api,拿到ak,sk,endpoint,构造出s3PDFReader
  8. 2)根据用户输入的s3地址,调用spark集群的api,拿到ak,sk,endpoint,构造出s3ImageWriter
  9. 其余部分至于构造s3cli, 获取ak,sk都在code-clean里写代码完成。不要反向依赖!!!
  10. """
  11. import re
  12. from loguru import logger
  13. from magic_pdf.libs.version import __version__
  14. from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
  15. from magic_pdf.rw import AbsReaderWriter
  16. from magic_pdf.pdf_parse_by_ocr_v2 import parse_pdf_by_ocr
  17. from magic_pdf.pdf_parse_by_txt_v2 import parse_pdf_by_txt
  18. PARSE_TYPE_TXT = "txt"
  19. PARSE_TYPE_OCR = "ocr"
  20. def parse_txt_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args,
  21. **kwargs):
  22. """
  23. 解析文本类pdf
  24. """
  25. pdf_info_dict = parse_pdf_by_txt(
  26. pdf_bytes,
  27. pdf_models,
  28. imageWriter,
  29. start_page_id=start_page,
  30. debug_mode=is_debug,
  31. )
  32. pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT
  33. pdf_info_dict["_version_name"] = __version__
  34. return pdf_info_dict
  35. def parse_ocr_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0, *args,
  36. **kwargs):
  37. """
  38. 解析ocr类pdf
  39. """
  40. pdf_info_dict = parse_pdf_by_ocr(
  41. pdf_bytes,
  42. pdf_models,
  43. imageWriter,
  44. start_page_id=start_page,
  45. debug_mode=is_debug,
  46. )
  47. pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR
  48. pdf_info_dict["_version_name"] = __version__
  49. return pdf_info_dict
  50. def parse_union_pdf(pdf_bytes: bytes, pdf_models: list, imageWriter: AbsReaderWriter, is_debug=False, start_page=0,
  51. input_model_is_empty: bool = False,
  52. *args, **kwargs):
  53. """
  54. ocr和文本混合的pdf,全部解析出来
  55. """
  56. def parse_pdf(method):
  57. try:
  58. return method(
  59. pdf_bytes,
  60. pdf_models,
  61. imageWriter,
  62. start_page_id=start_page,
  63. debug_mode=is_debug,
  64. )
  65. except Exception as e:
  66. logger.exception(e)
  67. return None
  68. pdf_info_dict = parse_pdf(parse_pdf_by_txt)
  69. text_all = ""
  70. for page_dict in pdf_info_dict['pdf_info']:
  71. for para_block in page_dict['para_blocks']:
  72. if para_block['type'] in ['title', 'text']:
  73. for line in para_block['lines']:
  74. for span in line['spans']:
  75. text_all += span['content']
  76. def calculate_not_common_character_rate(text):
  77. garbage_regex = re.compile(r'[^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a\u3000-\u303f\uff00-\uffef]')
  78. # 计算乱码字符的数量
  79. garbage_count = len(garbage_regex.findall(text))
  80. total = len(text)
  81. if total == 0:
  82. return 0 # 避免除以零的错误
  83. return garbage_count / total
  84. def calculate_not_printable_rate(text):
  85. printable_text = ""
  86. for c in text:
  87. if c.isprintable():
  88. printable_text += c
  89. printable_total = len(printable_text)
  90. total = len(text)
  91. if total == 0:
  92. return 0 # 避免除以零的错误
  93. return (total - printable_total) / total
  94. not_common_character_rate = calculate_not_common_character_rate(text_all)
  95. not_printable_rate = calculate_not_printable_rate(text_all)
  96. pdf_info_dict["_not_common_character_rate"] = not_common_character_rate
  97. pdf_info_dict["_not_printable_rate"] = not_printable_rate
  98. logger.info(f"not_common_character_rate: {not_common_character_rate}, not_printable_rate: {not_printable_rate}")
  99. # not_common_character_rate对小语种可能会有误伤,not_printable_rate对小语种较为友好
  100. if (pdf_info_dict is None
  101. or pdf_info_dict.get("_need_drop", False)
  102. or not_printable_rate > 0.02 # 参考一些正常的pdf,这个值没有超过0.01的,阈值设为0.02
  103. ):
  104. logger.warning(f"parse_pdf_by_txt drop or error or garbled_rate too large, switch to parse_pdf_by_ocr")
  105. if input_model_is_empty:
  106. pdf_models = doc_analyze(pdf_bytes, ocr=True)
  107. pdf_info_dict = parse_pdf(parse_pdf_by_ocr)
  108. if pdf_info_dict is None:
  109. raise Exception("Both parse_pdf_by_txt and parse_pdf_by_ocr failed.")
  110. else:
  111. pdf_info_dict["_parse_type"] = PARSE_TYPE_OCR
  112. else:
  113. pdf_info_dict["_parse_type"] = PARSE_TYPE_TXT
  114. pdf_info_dict["_version_name"] = __version__
  115. return pdf_info_dict