model_json_to_middle_json.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import os
  3. import time
  4. from loguru import logger
  5. from tqdm import tqdm
  6. from mineru.utils.config_reader import get_device, get_llm_aided_config, get_formula_enable
  7. from mineru.backend.pipeline.model_init import AtomModelSingleton
  8. from mineru.backend.pipeline.para_split import para_split
  9. from mineru.utils.block_pre_proc import prepare_block_bboxes, process_groups
  10. from mineru.utils.block_sort import sort_blocks_by_bbox
  11. from mineru.utils.boxbase import calculate_overlap_area_in_bbox1_area_ratio
  12. from mineru.utils.cut_image import cut_image_and_table
  13. from mineru.utils.enum_class import ContentType
  14. from mineru.utils.llm_aided import llm_aided_title
  15. from mineru.utils.model_utils import clean_memory
  16. from mineru.backend.pipeline.pipeline_magic_model import MagicModel
  17. from mineru.utils.ocr_utils import OcrConfidence
  18. from mineru.utils.span_block_fix import fill_spans_in_blocks, fix_discarded_block, fix_block_spans
  19. from mineru.utils.span_pre_proc import remove_outside_spans, remove_overlaps_low_confidence_spans, \
  20. remove_overlaps_min_spans, txt_spans_extract
  21. from mineru.version import __version__
  22. from mineru.utils.hash_utils import str_md5
  23. def page_model_info_to_page_info(page_model_info, image_dict, page, image_writer, page_index, ocr_enable=False, formula_enabled=True):
  24. scale = image_dict["scale"]
  25. page_pil_img = image_dict["img_pil"]
  26. page_img_md5 = str_md5(image_dict["img_base64"])
  27. page_w, page_h = map(int, page.get_size())
  28. magic_model = MagicModel(page_model_info, scale)
  29. """从magic_model对象中获取后面会用到的区块信息"""
  30. discarded_blocks = magic_model.get_discarded()
  31. text_blocks = magic_model.get_text_blocks()
  32. title_blocks = magic_model.get_title_blocks()
  33. inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations()
  34. img_groups = magic_model.get_imgs()
  35. table_groups = magic_model.get_tables()
  36. """对image和table的区块分组"""
  37. img_body_blocks, img_caption_blocks, img_footnote_blocks, maybe_text_image_blocks = process_groups(
  38. img_groups, 'image_body', 'image_caption_list', 'image_footnote_list'
  39. )
  40. table_body_blocks, table_caption_blocks, table_footnote_blocks, _ = process_groups(
  41. table_groups, 'table_body', 'table_caption_list', 'table_footnote_list'
  42. )
  43. """获取所有的spans信息"""
  44. spans = magic_model.get_all_spans()
  45. """某些图可能是文本块,通过简单的规则判断一下"""
  46. if len(maybe_text_image_blocks) > 0:
  47. for block in maybe_text_image_blocks:
  48. span_in_block_list = []
  49. for span in spans:
  50. if span['type'] == 'text' and calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], block['bbox']) > 0.7:
  51. span_in_block_list.append(span)
  52. if len(span_in_block_list) > 0:
  53. # span_in_block_list中所有bbox的面积之和
  54. spans_area = sum((span['bbox'][2] - span['bbox'][0]) * (span['bbox'][3] - span['bbox'][1]) for span in span_in_block_list)
  55. # 求ocr_res_area和res的面积的比值
  56. block_area = (block['bbox'][2] - block['bbox'][0]) * (block['bbox'][3] - block['bbox'][1])
  57. if block_area > 0:
  58. ratio = spans_area / block_area
  59. if ratio > 0.25 and ocr_enable:
  60. # 移除block的group_id
  61. block.pop('group_id', None)
  62. # 符合文本图的条件就把块加入到文本块列表中
  63. text_blocks.append(block)
  64. else:
  65. # 如果不符合文本图的条件,就把块加回到图片块列表中
  66. img_body_blocks.append(block)
  67. else:
  68. img_body_blocks.append(block)
  69. """将所有区块的bbox整理到一起"""
  70. if formula_enabled:
  71. interline_equation_blocks = []
  72. if len(interline_equation_blocks) > 0:
  73. for block in interline_equation_blocks:
  74. spans.append({
  75. "type": ContentType.INTERLINE_EQUATION,
  76. 'score': block['score'],
  77. "bbox": block['bbox'],
  78. "content": "",
  79. })
  80. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  81. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  82. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  83. discarded_blocks,
  84. text_blocks,
  85. title_blocks,
  86. interline_equation_blocks,
  87. page_w,
  88. page_h,
  89. )
  90. else:
  91. all_bboxes, all_discarded_blocks, footnote_blocks = prepare_block_bboxes(
  92. img_body_blocks, img_caption_blocks, img_footnote_blocks,
  93. table_body_blocks, table_caption_blocks, table_footnote_blocks,
  94. discarded_blocks,
  95. text_blocks,
  96. title_blocks,
  97. interline_equations,
  98. page_w,
  99. page_h,
  100. )
  101. """在删除重复span之前,应该通过image_body和table_body的block过滤一下image和table的span"""
  102. """顺便删除大水印并保留abandon的span"""
  103. spans = remove_outside_spans(spans, all_bboxes, all_discarded_blocks)
  104. """删除重叠spans中置信度较低的那些"""
  105. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  106. """删除重叠spans中较小的那些"""
  107. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  108. """根据parse_mode,构造spans,主要是文本类的字符填充"""
  109. if ocr_enable:
  110. pass
  111. else:
  112. """使用新版本的混合ocr方案."""
  113. spans = txt_spans_extract(page, spans, page_pil_img, scale, all_bboxes, all_discarded_blocks)
  114. """先处理不需要排版的discarded_blocks"""
  115. discarded_block_with_spans, spans = fill_spans_in_blocks(
  116. all_discarded_blocks, spans, 0.4
  117. )
  118. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  119. """如果当前页面没有有效的bbox则跳过"""
  120. if len(all_bboxes) == 0:
  121. return None
  122. """对image/table/interline_equation截图"""
  123. for span in spans:
  124. if span['type'] in [ContentType.IMAGE, ContentType.TABLE, ContentType.INTERLINE_EQUATION]:
  125. span = cut_image_and_table(
  126. span, page_pil_img, page_img_md5, page_index, image_writer, scale=scale
  127. )
  128. """span填充进block"""
  129. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.5)
  130. """对block进行fix操作"""
  131. fix_blocks = fix_block_spans(block_with_spans)
  132. """对block进行排序"""
  133. sorted_blocks = sort_blocks_by_bbox(fix_blocks, page_w, page_h, footnote_blocks)
  134. """构造page_info"""
  135. page_info = make_page_info_dict(sorted_blocks, page_index, page_w, page_h, fix_discarded_blocks)
  136. return page_info
  137. def result_to_middle_json(model_list, images_list, pdf_doc, image_writer, lang=None, ocr_enable=False, formula_enabled=True):
  138. middle_json = {"pdf_info": [], "_backend":"pipeline", "_version_name": __version__}
  139. formula_enabled = get_formula_enable(formula_enabled)
  140. for page_index, page_model_info in tqdm(enumerate(model_list), total=len(model_list), desc="Processing pages"):
  141. page = pdf_doc[page_index]
  142. image_dict = images_list[page_index]
  143. page_info = page_model_info_to_page_info(
  144. page_model_info, image_dict, page, image_writer, page_index, ocr_enable=ocr_enable, formula_enabled=formula_enabled
  145. )
  146. if page_info is None:
  147. page_w, page_h = map(int, page.get_size())
  148. page_info = make_page_info_dict([], page_index, page_w, page_h, [])
  149. middle_json["pdf_info"].append(page_info)
  150. """后置ocr处理"""
  151. need_ocr_list = []
  152. img_crop_list = []
  153. text_block_list = []
  154. for page_info in middle_json["pdf_info"]:
  155. for block in page_info['preproc_blocks']:
  156. if block['type'] in ['table', 'image']:
  157. for sub_block in block['blocks']:
  158. if sub_block['type'] in ['image_caption', 'image_footnote', 'table_caption', 'table_footnote']:
  159. text_block_list.append(sub_block)
  160. elif block['type'] in ['text', 'title']:
  161. text_block_list.append(block)
  162. for block in page_info['discarded_blocks']:
  163. text_block_list.append(block)
  164. for block in text_block_list:
  165. for line in block['lines']:
  166. for span in line['spans']:
  167. if 'np_img' in span:
  168. need_ocr_list.append(span)
  169. img_crop_list.append(span['np_img'])
  170. span.pop('np_img')
  171. if len(img_crop_list) > 0:
  172. atom_model_manager = AtomModelSingleton()
  173. ocr_model = atom_model_manager.get_atom_model(
  174. atom_model_name='ocr',
  175. ocr_show_log=False,
  176. det_db_box_thresh=0.3,
  177. lang=lang
  178. )
  179. ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
  180. assert len(ocr_res_list) == len(
  181. need_ocr_list), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_list)}'
  182. for index, span in enumerate(need_ocr_list):
  183. ocr_text, ocr_score = ocr_res_list[index]
  184. if ocr_score > OcrConfidence.min_confidence:
  185. span['content'] = ocr_text
  186. span['score'] = float(f"{ocr_score:.3f}")
  187. else:
  188. span['content'] = ''
  189. span['score'] = 0.0
  190. """分段"""
  191. para_split(middle_json["pdf_info"])
  192. """llm优化"""
  193. llm_aided_config = get_llm_aided_config()
  194. if llm_aided_config is not None:
  195. """标题优化"""
  196. title_aided_config = llm_aided_config.get('title_aided', None)
  197. if title_aided_config is not None:
  198. if title_aided_config.get('enable', False):
  199. llm_aided_title_start_time = time.time()
  200. llm_aided_title(middle_json["pdf_info"], title_aided_config)
  201. logger.info(f'llm aided title time: {round(time.time() - llm_aided_title_start_time, 2)}')
  202. """清理内存"""
  203. pdf_doc.close()
  204. if os.getenv('MINERU_DONOT_CLEAN_MEM') is None and len(model_list) >= 10:
  205. clean_memory(get_device())
  206. return middle_json
  207. def make_page_info_dict(blocks, page_id, page_w, page_h, discarded_blocks):
  208. return_dict = {
  209. 'preproc_blocks': blocks,
  210. 'page_idx': page_id,
  211. 'page_size': [page_w, page_h],
  212. 'discarded_blocks': discarded_blocks,
  213. }
  214. return return_dict