pipeline_magic_model.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in, get_minbox_if_overlap_by_ratio
  2. from mineru.utils.enum_class import CategoryId, ContentType
  3. class MagicModel:
  4. """每个函数没有得到元素的时候返回空list."""
  5. def __init__(self, page_model_info: dict, scale: float):
  6. self.__page_model_info = page_model_info
  7. self.__scale = scale
  8. """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
  9. self.__fix_axis()
  10. """删除置信度特别低的模型数据(<0.05),提高质量"""
  11. self.__fix_by_remove_low_confidence()
  12. """删除高iou(>0.9)数据中置信度较低的那个"""
  13. self.__fix_by_remove_high_iou_and_low_confidence()
  14. """将部分tbale_footnote修正为image_footnote"""
  15. self.__fix_footnote()
  16. """处理重叠的image_body和table_body"""
  17. self.__fix_by_remove_overlap_image_table_body()
  18. def __fix_by_remove_overlap_image_table_body(self):
  19. need_remove_list = []
  20. layout_dets = self.__page_model_info['layout_dets']
  21. image_blocks = list(filter(
  22. lambda x: x['category_id'] == CategoryId.ImageBody, layout_dets
  23. ))
  24. table_blocks = list(filter(
  25. lambda x: x['category_id'] == CategoryId.TableBody, layout_dets
  26. ))
  27. def add_need_remove_block(blocks):
  28. for i in range(len(blocks)):
  29. for j in range(i + 1, len(blocks)):
  30. block1 = blocks[i]
  31. block2 = blocks[j]
  32. overlap_box = get_minbox_if_overlap_by_ratio(
  33. block1['bbox'], block2['bbox'], 0.8
  34. )
  35. if overlap_box is not None:
  36. # 判断哪个区块的面积更小,移除较小的区块
  37. area1 = (block1['bbox'][2] - block1['bbox'][0]) * (block1['bbox'][3] - block1['bbox'][1])
  38. area2 = (block2['bbox'][2] - block2['bbox'][0]) * (block2['bbox'][3] - block2['bbox'][1])
  39. if area1 <= area2:
  40. block_to_remove = block1
  41. large_block = block2
  42. else:
  43. block_to_remove = block2
  44. large_block = block1
  45. if block_to_remove not in need_remove_list:
  46. # 扩展大区块的边界框
  47. x1, y1, x2, y2 = large_block['bbox']
  48. sx1, sy1, sx2, sy2 = block_to_remove['bbox']
  49. x1 = min(x1, sx1)
  50. y1 = min(y1, sy1)
  51. x2 = max(x2, sx2)
  52. y2 = max(y2, sy2)
  53. large_block['bbox'] = [x1, y1, x2, y2]
  54. need_remove_list.append(block_to_remove)
  55. # 处理图像-图像重叠
  56. add_need_remove_block(image_blocks)
  57. # 处理表格-表格重叠
  58. add_need_remove_block(table_blocks)
  59. # 从布局中移除标记的区块
  60. for need_remove in need_remove_list:
  61. if need_remove in layout_dets:
  62. layout_dets.remove(need_remove)
  63. def __fix_axis(self):
  64. need_remove_list = []
  65. layout_dets = self.__page_model_info['layout_dets']
  66. for layout_det in layout_dets:
  67. x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
  68. bbox = [
  69. int(x0 / self.__scale),
  70. int(y0 / self.__scale),
  71. int(x1 / self.__scale),
  72. int(y1 / self.__scale),
  73. ]
  74. layout_det['bbox'] = bbox
  75. # 删除高度或者宽度小于等于0的spans
  76. if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
  77. need_remove_list.append(layout_det)
  78. for need_remove in need_remove_list:
  79. layout_dets.remove(need_remove)
  80. def __fix_by_remove_low_confidence(self):
  81. need_remove_list = []
  82. layout_dets = self.__page_model_info['layout_dets']
  83. for layout_det in layout_dets:
  84. if layout_det['score'] <= 0.05:
  85. need_remove_list.append(layout_det)
  86. else:
  87. continue
  88. for need_remove in need_remove_list:
  89. layout_dets.remove(need_remove)
  90. def __fix_by_remove_high_iou_and_low_confidence(self):
  91. need_remove_list = []
  92. layout_dets = list(filter(
  93. lambda x: x['category_id'] in [
  94. CategoryId.Title,
  95. CategoryId.Text,
  96. CategoryId.ImageBody,
  97. CategoryId.ImageCaption,
  98. CategoryId.TableBody,
  99. CategoryId.TableCaption,
  100. CategoryId.TableFootnote,
  101. CategoryId.InterlineEquation_Layout,
  102. CategoryId.InterlineEquationNumber_Layout,
  103. ], self.__page_model_info['layout_dets']
  104. )
  105. )
  106. for i in range(len(layout_dets)):
  107. for j in range(i + 1, len(layout_dets)):
  108. layout_det1 = layout_dets[i]
  109. layout_det2 = layout_dets[j]
  110. if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
  111. layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
  112. if layout_det_need_remove not in need_remove_list:
  113. need_remove_list.append(layout_det_need_remove)
  114. for need_remove in need_remove_list:
  115. self.__page_model_info['layout_dets'].remove(need_remove)
  116. def __fix_footnote(self):
  117. footnotes = []
  118. figures = []
  119. tables = []
  120. for obj in self.__page_model_info['layout_dets']:
  121. if obj['category_id'] == CategoryId.TableFootnote:
  122. footnotes.append(obj)
  123. elif obj['category_id'] == CategoryId.ImageBody:
  124. figures.append(obj)
  125. elif obj['category_id'] == CategoryId.TableBody:
  126. tables.append(obj)
  127. if len(footnotes) * len(figures) == 0:
  128. continue
  129. dis_figure_footnote = {}
  130. dis_table_footnote = {}
  131. for i in range(len(footnotes)):
  132. for j in range(len(figures)):
  133. pos_flag_count = sum(
  134. list(
  135. map(
  136. lambda x: 1 if x else 0,
  137. bbox_relative_pos(
  138. footnotes[i]['bbox'], figures[j]['bbox']
  139. ),
  140. )
  141. )
  142. )
  143. if pos_flag_count > 1:
  144. continue
  145. dis_figure_footnote[i] = min(
  146. self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
  147. dis_figure_footnote.get(i, float('inf')),
  148. )
  149. for i in range(len(footnotes)):
  150. for j in range(len(tables)):
  151. pos_flag_count = sum(
  152. list(
  153. map(
  154. lambda x: 1 if x else 0,
  155. bbox_relative_pos(
  156. footnotes[i]['bbox'], tables[j]['bbox']
  157. ),
  158. )
  159. )
  160. )
  161. if pos_flag_count > 1:
  162. continue
  163. dis_table_footnote[i] = min(
  164. self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
  165. dis_table_footnote.get(i, float('inf')),
  166. )
  167. for i in range(len(footnotes)):
  168. if i not in dis_figure_footnote:
  169. continue
  170. if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
  171. footnotes[i]['category_id'] = CategoryId.ImageFootnote
  172. def _bbox_distance(self, bbox1, bbox2):
  173. left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
  174. flags = [left, right, bottom, top]
  175. count = sum([1 if v else 0 for v in flags])
  176. if count > 1:
  177. return float('inf')
  178. if left or right:
  179. l1 = bbox1[3] - bbox1[1]
  180. l2 = bbox2[3] - bbox2[1]
  181. else:
  182. l1 = bbox1[2] - bbox1[0]
  183. l2 = bbox2[2] - bbox2[0]
  184. if l2 > l1 and (l2 - l1) / l1 > 0.3:
  185. return float('inf')
  186. return bbox_distance(bbox1, bbox2)
  187. def __reduct_overlap(self, bboxes):
  188. N = len(bboxes)
  189. keep = [True] * N
  190. for i in range(N):
  191. for j in range(N):
  192. if i == j:
  193. continue
  194. if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
  195. keep[i] = False
  196. return [bboxes[i] for i in range(N) if keep[i]]
  197. def __tie_up_category_by_distance_v3(
  198. self,
  199. subject_category_id: int,
  200. object_category_id: int,
  201. ):
  202. subjects = self.__reduct_overlap(
  203. list(
  204. map(
  205. lambda x: {'bbox': x['bbox'], 'score': x['score']},
  206. filter(
  207. lambda x: x['category_id'] == subject_category_id,
  208. self.__page_model_info['layout_dets'],
  209. ),
  210. )
  211. )
  212. )
  213. objects = self.__reduct_overlap(
  214. list(
  215. map(
  216. lambda x: {'bbox': x['bbox'], 'score': x['score']},
  217. filter(
  218. lambda x: x['category_id'] == object_category_id,
  219. self.__page_model_info['layout_dets'],
  220. ),
  221. )
  222. )
  223. )
  224. ret = []
  225. N, M = len(subjects), len(objects)
  226. subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
  227. objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
  228. OBJ_IDX_OFFSET = 10000
  229. SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
  230. all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
  231. seen_idx = set()
  232. seen_sub_idx = set()
  233. while N > len(seen_sub_idx):
  234. candidates = []
  235. for idx, kind, x0, y0 in all_boxes_with_idx:
  236. if idx in seen_idx:
  237. continue
  238. candidates.append((idx, kind, x0, y0))
  239. if len(candidates) == 0:
  240. break
  241. left_x = min([v[2] for v in candidates])
  242. top_y = min([v[3] for v in candidates])
  243. candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
  244. fst_idx, fst_kind, left_x, top_y = candidates[0]
  245. fst_bbox = subjects[fst_idx]['bbox'] if fst_kind == SUB_BIT_KIND else objects[fst_idx - OBJ_IDX_OFFSET]['bbox']
  246. candidates.sort(key=lambda x: bbox_distance(fst_bbox, subjects[x[0]]['bbox']) if x[1] == SUB_BIT_KIND else bbox_distance(fst_bbox, objects[x[0] - OBJ_IDX_OFFSET]['bbox']))
  247. nxt = None
  248. for i in range(1, len(candidates)):
  249. if candidates[i][1] ^ fst_kind == 1:
  250. nxt = candidates[i]
  251. break
  252. if nxt is None:
  253. break
  254. if fst_kind == SUB_BIT_KIND:
  255. sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
  256. else:
  257. sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
  258. pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
  259. nearest_dis = float('inf')
  260. for i in range(N):
  261. # 取消原先算法中 1对1 匹配的偏置
  262. # if i in seen_idx or i == sub_idx:continue
  263. nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
  264. if pair_dis >= 3*nearest_dis:
  265. seen_idx.add(sub_idx)
  266. continue
  267. seen_idx.add(sub_idx)
  268. seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
  269. seen_sub_idx.add(sub_idx)
  270. ret.append(
  271. {
  272. 'sub_bbox': {
  273. 'bbox': subjects[sub_idx]['bbox'],
  274. 'score': subjects[sub_idx]['score'],
  275. },
  276. 'obj_bboxes': [
  277. {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
  278. ],
  279. 'sub_idx': sub_idx,
  280. }
  281. )
  282. for i in range(len(objects)):
  283. j = i + OBJ_IDX_OFFSET
  284. if j in seen_idx:
  285. continue
  286. seen_idx.add(j)
  287. nearest_dis, nearest_sub_idx = float('inf'), -1
  288. for k in range(len(subjects)):
  289. dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
  290. if dis < nearest_dis:
  291. nearest_dis = dis
  292. nearest_sub_idx = k
  293. for k in range(len(subjects)):
  294. if k != nearest_sub_idx: continue
  295. if k in seen_sub_idx:
  296. for kk in range(len(ret)):
  297. if ret[kk]['sub_idx'] == k:
  298. ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
  299. break
  300. else:
  301. ret.append(
  302. {
  303. 'sub_bbox': {
  304. 'bbox': subjects[k]['bbox'],
  305. 'score': subjects[k]['score'],
  306. },
  307. 'obj_bboxes': [
  308. {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
  309. ],
  310. 'sub_idx': k,
  311. }
  312. )
  313. seen_sub_idx.add(k)
  314. seen_idx.add(k)
  315. for i in range(len(subjects)):
  316. if i in seen_sub_idx:
  317. continue
  318. ret.append(
  319. {
  320. 'sub_bbox': {
  321. 'bbox': subjects[i]['bbox'],
  322. 'score': subjects[i]['score'],
  323. },
  324. 'obj_bboxes': [],
  325. 'sub_idx': i,
  326. }
  327. )
  328. return ret
  329. def get_imgs(self):
  330. with_captions = self.__tie_up_category_by_distance_v3(
  331. CategoryId.ImageBody, CategoryId.ImageCaption
  332. )
  333. with_footnotes = self.__tie_up_category_by_distance_v3(
  334. CategoryId.ImageBody, CategoryId.ImageFootnote
  335. )
  336. ret = []
  337. for v in with_captions:
  338. record = {
  339. 'image_body': v['sub_bbox'],
  340. 'image_caption_list': v['obj_bboxes'],
  341. }
  342. filter_idx = v['sub_idx']
  343. d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
  344. record['image_footnote_list'] = d['obj_bboxes']
  345. ret.append(record)
  346. return ret
  347. def get_tables(self) -> list:
  348. with_captions = self.__tie_up_category_by_distance_v3(
  349. CategoryId.TableBody, CategoryId.TableCaption
  350. )
  351. with_footnotes = self.__tie_up_category_by_distance_v3(
  352. CategoryId.TableBody, CategoryId.TableFootnote
  353. )
  354. ret = []
  355. for v in with_captions:
  356. record = {
  357. 'table_body': v['sub_bbox'],
  358. 'table_caption_list': v['obj_bboxes'],
  359. }
  360. filter_idx = v['sub_idx']
  361. d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
  362. record['table_footnote_list'] = d['obj_bboxes']
  363. ret.append(record)
  364. return ret
  365. def get_equations(self) -> tuple[list, list, list]: # 有坐标,也有字
  366. inline_equations = self.__get_blocks_by_type(
  367. CategoryId.InlineEquation, ['latex']
  368. )
  369. interline_equations = self.__get_blocks_by_type(
  370. CategoryId.InterlineEquation_YOLO, ['latex']
  371. )
  372. interline_equations_blocks = self.__get_blocks_by_type(
  373. CategoryId.InterlineEquation_Layout
  374. )
  375. return inline_equations, interline_equations, interline_equations_blocks
  376. def get_discarded(self) -> list: # 自研模型,只有坐标
  377. blocks = self.__get_blocks_by_type(CategoryId.Abandon)
  378. return blocks
  379. def get_text_blocks(self) -> list: # 自研模型搞的,只有坐标,没有字
  380. blocks = self.__get_blocks_by_type(CategoryId.Text)
  381. return blocks
  382. def get_title_blocks(self) -> list: # 自研模型,只有坐标,没字
  383. blocks = self.__get_blocks_by_type(CategoryId.Title)
  384. return blocks
  385. def get_all_spans(self) -> list:
  386. def remove_duplicate_spans(spans):
  387. new_spans = []
  388. for span in spans:
  389. if not any(span == existing_span for existing_span in new_spans):
  390. new_spans.append(span)
  391. return new_spans
  392. all_spans = []
  393. layout_dets = self.__page_model_info['layout_dets']
  394. allow_category_id_list = [
  395. CategoryId.ImageBody,
  396. CategoryId.TableBody,
  397. CategoryId.InlineEquation,
  398. CategoryId.InterlineEquation_YOLO,
  399. CategoryId.OcrText,
  400. ]
  401. """当成span拼接的"""
  402. for layout_det in layout_dets:
  403. category_id = layout_det['category_id']
  404. if category_id in allow_category_id_list:
  405. span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
  406. if category_id == CategoryId.ImageBody:
  407. span['type'] = ContentType.IMAGE
  408. elif category_id == CategoryId.TableBody:
  409. # 获取table模型结果
  410. latex = layout_det.get('latex', None)
  411. html = layout_det.get('html', None)
  412. if latex:
  413. span['latex'] = latex
  414. elif html:
  415. span['html'] = html
  416. span['type'] = ContentType.TABLE
  417. elif category_id == CategoryId.InlineEquation:
  418. span['content'] = layout_det['latex']
  419. span['type'] = ContentType.INLINE_EQUATION
  420. elif category_id == CategoryId.InterlineEquation_YOLO:
  421. span['content'] = layout_det['latex']
  422. span['type'] = ContentType.INTERLINE_EQUATION
  423. elif category_id == CategoryId.OcrText:
  424. span['content'] = layout_det['text']
  425. span['type'] = ContentType.TEXT
  426. all_spans.append(span)
  427. return remove_duplicate_spans(all_spans)
  428. def __get_blocks_by_type(
  429. self, category_type: int, extra_col=None
  430. ) -> list:
  431. if extra_col is None:
  432. extra_col = []
  433. blocks = []
  434. layout_dets = self.__page_model_info.get('layout_dets', [])
  435. for item in layout_dets:
  436. category_id = item.get('category_id', -1)
  437. bbox = item.get('bbox', None)
  438. if category_id == category_type:
  439. block = {
  440. 'bbox': bbox,
  441. 'score': item.get('score'),
  442. }
  443. for col in extra_col:
  444. block[col] = item.get(col, None)
  445. blocks.append(block)
  446. return blocks