magic_model.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import _is_in, bbox_relative_pos, bbox_distance
  12. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  13. class MagicModel:
  14. """
  15. 每个函数没有得到元素的时候返回空list
  16. """
  17. def __fix_axis(self):
  18. for model_page_info in self.__model_list:
  19. need_remove_list = []
  20. page_no = model_page_info["page_info"]["page_no"]
  21. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  22. model_page_info, self.__docs[page_no]
  23. )
  24. layout_dets = model_page_info["layout_dets"]
  25. for layout_det in layout_dets:
  26. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  27. bbox = [
  28. int(x0 / horizontal_scale_ratio),
  29. int(y0 / vertical_scale_ratio),
  30. int(x1 / horizontal_scale_ratio),
  31. int(y1 / vertical_scale_ratio),
  32. ]
  33. layout_det["bbox"] = bbox
  34. # 删除高度或者宽度为0的spans
  35. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  36. need_remove_list.append(layout_det)
  37. for need_remove in need_remove_list:
  38. layout_dets.remove(need_remove)
  39. def __fix_by_confidence(self):
  40. for model_page_info in self.__model_list:
  41. need_remove_list = []
  42. layout_dets = model_page_info["layout_dets"]
  43. for layout_det in layout_dets:
  44. if layout_det["score"] < 0.6:
  45. need_remove_list.append(layout_det)
  46. else:
  47. continue
  48. for need_remove in need_remove_list:
  49. layout_dets.remove(need_remove)
  50. def __init__(self, model_list: list, docs: fitz.Document):
  51. self.__model_list = model_list
  52. self.__docs = docs
  53. self.__fix_axis()
  54. #@TODO 删除掉一些低置信度的会导致分段错误,后面再修复
  55. # self.__fix_by_confidence()
  56. def __reduct_overlap(self, bboxes):
  57. N = len(bboxes)
  58. keep = [True] * N
  59. for i in range(N):
  60. for j in range(N):
  61. if i == j:
  62. continue
  63. if _is_in(bboxes[i], bboxes[j]):
  64. keep[i] = False
  65. return [bboxes[i] for i in range(N) if keep[i]]
  66. def __tie_up_category_by_distance(
  67. self, page_no, subject_category_id, object_category_id
  68. ):
  69. """
  70. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  71. """
  72. ret = []
  73. MAX_DIS_OF_POINT = 10 ** 9 + 7
  74. subjects = self.__reduct_overlap(
  75. list(
  76. map(
  77. lambda x: x["bbox"],
  78. filter(
  79. lambda x: x["category_id"] == subject_category_id,
  80. self.__model_list[page_no]["layout_dets"],
  81. ),
  82. )
  83. )
  84. )
  85. objects = self.__reduct_overlap(
  86. list(
  87. map(
  88. lambda x: x["bbox"],
  89. filter(
  90. lambda x: x["category_id"] == object_category_id,
  91. self.__model_list[page_no]["layout_dets"],
  92. ),
  93. )
  94. )
  95. )
  96. subject_object_relation_map = {}
  97. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  98. all_bboxes = []
  99. for v in subjects:
  100. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  101. for v in objects:
  102. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  103. N = len(all_bboxes)
  104. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  105. for i in range(N):
  106. for j in range(i):
  107. if (
  108. all_bboxes[i]["category_id"] == subject_category_id
  109. and all_bboxes[j]["category_id"] == subject_category_id
  110. ):
  111. continue
  112. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  113. dis[j][i] = dis[i][j]
  114. used = set()
  115. for i in range(N):
  116. # 求第 i 个 subject 所关联的 object
  117. if all_bboxes[i]["category_id"] != subject_category_id:
  118. continue
  119. seen = set()
  120. candidates = []
  121. arr = []
  122. for j in range(N):
  123. pos_flag_count = sum(
  124. list(
  125. map(
  126. lambda x: 1 if x else 0,
  127. bbox_relative_pos(
  128. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  129. ),
  130. )
  131. )
  132. )
  133. if pos_flag_count > 1:
  134. continue
  135. if (
  136. all_bboxes[j]["category_id"] != object_category_id
  137. or j in used
  138. or dis[i][j] == MAX_DIS_OF_POINT
  139. ):
  140. continue
  141. arr.append((dis[i][j], j))
  142. arr.sort(key=lambda x: x[0])
  143. if len(arr) > 0:
  144. candidates.append(arr[0][1])
  145. seen.add(arr[0][1])
  146. # 已经获取初始种子
  147. for j in set(candidates):
  148. tmp = []
  149. for k in range(i + 1, N):
  150. pos_flag_count = sum(
  151. list(
  152. map(
  153. lambda x: 1 if x else 0,
  154. bbox_relative_pos(
  155. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  156. ),
  157. )
  158. )
  159. )
  160. if pos_flag_count > 1:
  161. continue
  162. if (
  163. all_bboxes[k]["category_id"] != object_category_id
  164. or k in used
  165. or k in seen
  166. or dis[j][k] == MAX_DIS_OF_POINT
  167. ):
  168. continue
  169. is_nearest = True
  170. for l in range(i + 1, N):
  171. if l in (j, k) or l in used or l in seen:
  172. continue
  173. if not float_gt(dis[l][k], dis[j][k]):
  174. is_nearest = False
  175. break
  176. if is_nearest:
  177. tmp.append(k)
  178. seen.add(k)
  179. candidates = tmp
  180. if len(candidates) == 0:
  181. break
  182. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  183. # 先扩一下 bbox,
  184. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  185. all_bboxes[i]["bbox"][0]
  186. ]
  187. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  188. all_bboxes[i]["bbox"][1]
  189. ]
  190. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  191. all_bboxes[i]["bbox"][2]
  192. ]
  193. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  194. all_bboxes[i]["bbox"][3]
  195. ]
  196. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  197. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  198. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  199. caption_poses = [
  200. [ox0, oy0, ix0, oy1],
  201. [ox0, oy0, ox1, iy0],
  202. [ox0, iy1, ox1, oy1],
  203. [ix1, oy0, ox1, oy1],
  204. ]
  205. caption_areas = []
  206. for bbox in caption_poses:
  207. embed_arr = []
  208. for idx in seen:
  209. if _is_in(all_bboxes[idx]["bbox"], bbox):
  210. embed_arr.append(idx)
  211. if len(embed_arr) > 0:
  212. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  213. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  214. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  215. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  216. caption_areas.append(
  217. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  218. )
  219. else:
  220. caption_areas.append(0)
  221. subject_object_relation_map[i] = []
  222. if max(caption_areas) > 0:
  223. max_area_idx = caption_areas.index(max(caption_areas))
  224. caption_bbox = caption_poses[max_area_idx]
  225. for j in seen:
  226. if _is_in(all_bboxes[j]["bbox"], caption_bbox):
  227. used.add(j)
  228. subject_object_relation_map[i].append(j)
  229. for i in sorted(subject_object_relation_map.keys()):
  230. result = {
  231. "subject_body": all_bboxes[i]["bbox"],
  232. "all": all_bboxes[i]["bbox"],
  233. }
  234. if len(subject_object_relation_map[i]) > 0:
  235. x0 = min(
  236. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  237. )
  238. y0 = min(
  239. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  240. )
  241. x1 = max(
  242. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  243. )
  244. y1 = max(
  245. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  246. )
  247. result["object_body"] = [x0, y0, x1, y1]
  248. result["all"] = [
  249. min(x0, all_bboxes[i]["bbox"][0]),
  250. min(y0, all_bboxes[i]["bbox"][1]),
  251. max(x1, all_bboxes[i]["bbox"][2]),
  252. max(y1, all_bboxes[i]["bbox"][3]),
  253. ]
  254. ret.append(result)
  255. total_subject_object_dis = 0
  256. # 计算已经配对的 distance 距离
  257. for i in subject_object_relation_map.keys():
  258. for j in subject_object_relation_map[i]:
  259. total_subject_object_dis += bbox_distance(
  260. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  261. )
  262. # 计算未匹配的 subject 和 object 的距离(非精确版)
  263. with_caption_subject = set(
  264. [
  265. key
  266. for key in subject_object_relation_map.keys()
  267. if len(subject_object_relation_map[i]) > 0
  268. ]
  269. )
  270. for i in range(N):
  271. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  272. continue
  273. candidates = []
  274. for j in range(N):
  275. if (
  276. all_bboxes[j]["category_id"] != subject_category_id
  277. or j in with_caption_subject
  278. ):
  279. continue
  280. candidates.append((dis[i][j], j))
  281. if len(candidates) > 0:
  282. candidates.sort(key=lambda x: x[0])
  283. total_subject_object_dis += candidates[0][1]
  284. with_caption_subject.add(j)
  285. return ret, total_subject_object_dis
  286. def get_imgs(self, page_no: int): # @许瑞
  287. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  288. return [
  289. {
  290. "bbox": record["all"],
  291. "img_body_bbox": record["subject_body"],
  292. "img_caption_bbox": record.get("object_body", None),
  293. }
  294. for record in records
  295. ]
  296. def get_tables(
  297. self, page_no: int
  298. ) -> list: # 3个坐标, caption, table主体,table-note
  299. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  300. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  301. ret = []
  302. N, M = len(with_captions), len(with_footnotes)
  303. assert N == M
  304. for i in range(N):
  305. record = {
  306. "table_caption_bbox": with_captions[i].get("object_body", None),
  307. "table_body_bbox": with_captions[i]["subject_body"],
  308. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  309. }
  310. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  311. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  312. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  313. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  314. record["bbox"] = [x0, y0, x1, y1]
  315. ret.append(record)
  316. return ret
  317. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  318. inline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"])
  319. interline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"])
  320. interline_equations_blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no)
  321. return inline_equations, interline_equations, interline_equations_blocks
  322. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  323. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  324. return blocks
  325. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  326. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  327. return blocks
  328. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  329. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  330. return blocks
  331. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  332. text_spans = []
  333. model_page_info = self.__model_list[page_no]
  334. layout_dets = model_page_info["layout_dets"]
  335. for layout_det in layout_dets:
  336. if layout_det["category_id"] == "15":
  337. span = {
  338. "bbox": layout_det['bbox'],
  339. "content": layout_det["text"],
  340. }
  341. text_spans.append(span)
  342. return text_spans
  343. def get_all_spans(self, page_no: int) -> list:
  344. all_spans = []
  345. model_page_info = self.__model_list[page_no]
  346. layout_dets = model_page_info["layout_dets"]
  347. allow_category_id_list = [3, 5, 13, 14, 15]
  348. """当成span拼接的"""
  349. # 3: 'image', # 图片
  350. # 5: 'table', # 表格
  351. # 13: 'inline_equation', # 行内公式
  352. # 14: 'interline_equation', # 行间公式
  353. # 15: 'text', # ocr识别文本
  354. for layout_det in layout_dets:
  355. category_id = layout_det["category_id"]
  356. if category_id in allow_category_id_list:
  357. span = {
  358. "bbox": layout_det['bbox']
  359. }
  360. if category_id == 3:
  361. span["type"] = ContentType.Image
  362. elif category_id == 5:
  363. span["type"] = ContentType.Table
  364. elif category_id == 13:
  365. span["content"] = layout_det["latex"]
  366. span["type"] = ContentType.InlineEquation
  367. elif category_id == 14:
  368. span["content"] = layout_det["latex"]
  369. span["type"] = ContentType.InterlineEquation
  370. elif category_id == 15:
  371. span["content"] = layout_det["text"]
  372. span["type"] = ContentType.Text
  373. all_spans.append(span)
  374. return all_spans
  375. def get_page_size(self, page_no: int): # 获取页面宽高
  376. # 获取当前页的page对象
  377. page = self.__docs[page_no]
  378. # 获取当前页的宽高
  379. page_w = page.rect.width
  380. page_h = page.rect.height
  381. return page_w, page_h
  382. def __get_blocks_by_type(self, type: int, page_no: int, extra_col: list[str] = []) -> list:
  383. blocks = []
  384. for page_dict in self.__model_list:
  385. layout_dets = page_dict.get("layout_dets", [])
  386. page_info = page_dict.get("page_info", {})
  387. page_number = page_info.get("page_no", -1)
  388. if page_no != page_number:
  389. continue
  390. for item in layout_dets:
  391. category_id = item.get("category_id", -1)
  392. bbox = item.get("bbox", None)
  393. if category_id == type:
  394. block = {
  395. "bbox": bbox
  396. }
  397. for col in extra_col:
  398. block[col] = item.get(col, None)
  399. blocks.append(block)
  400. return blocks
  401. if __name__ == "__main__":
  402. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  403. if 0:
  404. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  405. model_file_path = r"linshixuqiu\19983-00_new.json"
  406. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  407. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  408. model_list = json.loads(model_json_txt)
  409. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  410. img_bucket_path = "imgs"
  411. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  412. pdf_docs = fitz.open("pdf", pdf_bytes)
  413. magic_model = MagicModel(model_list, pdf_docs)
  414. if 1:
  415. model_list = json.loads(
  416. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  417. )
  418. pdf_bytes = drw.read(
  419. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  420. )
  421. pdf_docs = fitz.open("pdf", pdf_bytes)
  422. magic_model = MagicModel(model_list, pdf_docs)
  423. for i in range(7):
  424. print(magic_model.get_imgs(i))