magic_model.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import _is_in, bbox_relative_pos, bbox_distance
  12. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  13. class MagicModel:
  14. """
  15. 每个函数没有得到元素的时候返回空list
  16. """
  17. def __fix_axis(self):
  18. for model_page_info in self.__model_list:
  19. need_remove_list = []
  20. page_no = model_page_info["page_info"]["page_no"]
  21. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  22. model_page_info, self.__docs[page_no]
  23. )
  24. layout_dets = model_page_info["layout_dets"]
  25. for layout_det in layout_dets:
  26. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  27. bbox = [
  28. int(x0 / horizontal_scale_ratio),
  29. int(y0 / vertical_scale_ratio),
  30. int(x1 / horizontal_scale_ratio),
  31. int(y1 / vertical_scale_ratio),
  32. ]
  33. layout_det["bbox"] = bbox
  34. # 删除高度或者宽度为0的spans
  35. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  36. need_remove_list.append(layout_det)
  37. for need_remove in need_remove_list:
  38. layout_dets.remove(need_remove)
  39. def __fix_by_confidence(self):
  40. for model_page_info in self.__model_list:
  41. need_remove_list = []
  42. layout_dets = model_page_info["layout_dets"]
  43. for layout_det in layout_dets:
  44. if layout_det["score"] < 0.95:
  45. need_remove_list.append(layout_det)
  46. else:
  47. continue
  48. for need_remove in need_remove_list:
  49. layout_dets.remove(need_remove)
  50. def __init__(self, model_list: list, docs: fitz.Document):
  51. self.__model_list = model_list
  52. self.__docs = docs
  53. self.__fix_axis()
  54. self.__fix_by_confidence()
  55. def __reduct_overlap(self, bboxes):
  56. N = len(bboxes)
  57. keep = [True] * N
  58. for i in range(N):
  59. for j in range(N):
  60. if i == j:
  61. continue
  62. if _is_in(bboxes[i], bboxes[j]):
  63. keep[i] = False
  64. return [bboxes[i] for i in range(N) if keep[i]]
  65. def __tie_up_category_by_distance(
  66. self, page_no, subject_category_id, object_category_id
  67. ):
  68. """
  69. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  70. """
  71. ret = []
  72. MAX_DIS_OF_POINT = 10 ** 9 + 7
  73. subjects = self.__reduct_overlap(
  74. list(
  75. map(
  76. lambda x: x["bbox"],
  77. filter(
  78. lambda x: x["category_id"] == subject_category_id,
  79. self.__model_list[page_no]["layout_dets"],
  80. ),
  81. )
  82. )
  83. )
  84. objects = self.__reduct_overlap(
  85. list(
  86. map(
  87. lambda x: x["bbox"],
  88. filter(
  89. lambda x: x["category_id"] == object_category_id,
  90. self.__model_list[page_no]["layout_dets"],
  91. ),
  92. )
  93. )
  94. )
  95. subject_object_relation_map = {}
  96. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  97. all_bboxes = []
  98. for v in subjects:
  99. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  100. for v in objects:
  101. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  102. N = len(all_bboxes)
  103. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  104. for i in range(N):
  105. for j in range(i):
  106. if (
  107. all_bboxes[i]["category_id"] == subject_category_id
  108. and all_bboxes[j]["category_id"] == subject_category_id
  109. ):
  110. continue
  111. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  112. dis[j][i] = dis[i][j]
  113. used = set()
  114. for i in range(N):
  115. # 求第 i 个 subject 所关联的 object
  116. if all_bboxes[i]["category_id"] != subject_category_id:
  117. continue
  118. seen = set()
  119. candidates = []
  120. arr = []
  121. for j in range(N):
  122. pos_flag_count = sum(
  123. list(
  124. map(
  125. lambda x: 1 if x else 0,
  126. bbox_relative_pos(
  127. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  128. ),
  129. )
  130. )
  131. )
  132. if pos_flag_count > 1:
  133. continue
  134. if (
  135. all_bboxes[j]["category_id"] != object_category_id
  136. or j in used
  137. or dis[i][j] == MAX_DIS_OF_POINT
  138. ):
  139. continue
  140. arr.append((dis[i][j], j))
  141. arr.sort(key=lambda x: x[0])
  142. if len(arr) > 0:
  143. candidates.append(arr[0][1])
  144. seen.add(arr[0][1])
  145. # 已经获取初始种子
  146. for j in set(candidates):
  147. tmp = []
  148. for k in range(i + 1, N):
  149. pos_flag_count = sum(
  150. list(
  151. map(
  152. lambda x: 1 if x else 0,
  153. bbox_relative_pos(
  154. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  155. ),
  156. )
  157. )
  158. )
  159. if pos_flag_count > 1:
  160. continue
  161. if (
  162. all_bboxes[k]["category_id"] != object_category_id
  163. or k in used
  164. or k in seen
  165. or dis[j][k] == MAX_DIS_OF_POINT
  166. ):
  167. continue
  168. is_nearest = True
  169. for l in range(i + 1, N):
  170. if l in (j, k) or l in used or l in seen:
  171. continue
  172. if not float_gt(dis[l][k], dis[j][k]):
  173. is_nearest = False
  174. break
  175. if is_nearest:
  176. tmp.append(k)
  177. seen.add(k)
  178. candidates = tmp
  179. if len(candidates) == 0:
  180. break
  181. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  182. # 先扩一下 bbox,
  183. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  184. all_bboxes[i]["bbox"][0]
  185. ]
  186. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  187. all_bboxes[i]["bbox"][1]
  188. ]
  189. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  190. all_bboxes[i]["bbox"][2]
  191. ]
  192. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  193. all_bboxes[i]["bbox"][3]
  194. ]
  195. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  196. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  197. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  198. caption_poses = [
  199. [ox0, oy0, ix0, oy1],
  200. [ox0, oy0, ox1, iy0],
  201. [ox0, iy1, ox1, oy1],
  202. [ix1, oy0, ox1, oy1],
  203. ]
  204. caption_areas = []
  205. for bbox in caption_poses:
  206. embed_arr = []
  207. for idx in seen:
  208. if _is_in(all_bboxes[idx]["bbox"], bbox):
  209. embed_arr.append(idx)
  210. if len(embed_arr) > 0:
  211. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  212. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  213. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  214. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  215. caption_areas.append(
  216. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  217. )
  218. else:
  219. caption_areas.append(0)
  220. subject_object_relation_map[i] = []
  221. if max(caption_areas) > 0:
  222. max_area_idx = caption_areas.index(max(caption_areas))
  223. caption_bbox = caption_poses[max_area_idx]
  224. for j in seen:
  225. if _is_in(all_bboxes[j]["bbox"], caption_bbox):
  226. used.add(j)
  227. subject_object_relation_map[i].append(j)
  228. for i in sorted(subject_object_relation_map.keys()):
  229. result = {
  230. "subject_body": all_bboxes[i]["bbox"],
  231. "all": all_bboxes[i]["bbox"],
  232. }
  233. if len(subject_object_relation_map[i]) > 0:
  234. x0 = min(
  235. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  236. )
  237. y0 = min(
  238. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  239. )
  240. x1 = max(
  241. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  242. )
  243. y1 = max(
  244. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  245. )
  246. result["object_body"] = [x0, y0, x1, y1]
  247. result["all"] = [
  248. min(x0, all_bboxes[i]["bbox"][0]),
  249. min(y0, all_bboxes[i]["bbox"][1]),
  250. max(x1, all_bboxes[i]["bbox"][2]),
  251. max(y1, all_bboxes[i]["bbox"][3]),
  252. ]
  253. ret.append(result)
  254. total_subject_object_dis = 0
  255. # 计算已经配对的 distance 距离
  256. for i in subject_object_relation_map.keys():
  257. for j in subject_object_relation_map[i]:
  258. total_subject_object_dis += bbox_distance(
  259. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  260. )
  261. # 计算未匹配的 subject 和 object 的距离(非精确版)
  262. with_caption_subject = set(
  263. [
  264. key
  265. for key in subject_object_relation_map.keys()
  266. if len(subject_object_relation_map[i]) > 0
  267. ]
  268. )
  269. for i in range(N):
  270. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  271. continue
  272. candidates = []
  273. for j in range(N):
  274. if (
  275. all_bboxes[j]["category_id"] != subject_category_id
  276. or j in with_caption_subject
  277. ):
  278. continue
  279. candidates.append((dis[i][j], j))
  280. if len(candidates) > 0:
  281. candidates.sort(key=lambda x: x[0])
  282. total_subject_object_dis += candidates[0][1]
  283. with_caption_subject.add(j)
  284. return ret, total_subject_object_dis
  285. def get_imgs(self, page_no: int): # @许瑞
  286. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  287. return [
  288. {
  289. "bbox": record["all"],
  290. "img_body_bbox": record["subject_body"],
  291. "img_caption_bbox": record.get("object_body", None),
  292. }
  293. for record in records
  294. ]
  295. def get_tables(
  296. self, page_no: int
  297. ) -> list: # 3个坐标, caption, table主体,table-note
  298. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  299. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  300. ret = []
  301. N, M = len(with_captions), len(with_footnotes)
  302. assert N == M
  303. for i in range(N):
  304. record = {
  305. "table_caption_bbox": with_captions[i].get("object_body", None),
  306. "table_body_bbox": with_captions[i]["subject_body"],
  307. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  308. }
  309. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  310. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  311. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  312. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  313. record["bbox"] = [x0, y0, x1, y1]
  314. ret.append(record)
  315. return ret
  316. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  317. inline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"])
  318. interline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"])
  319. interline_equations_blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no)
  320. return inline_equations, interline_equations, interline_equations_blocks
  321. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  322. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  323. return blocks
  324. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  325. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  326. return blocks
  327. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  328. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  329. return blocks
  330. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  331. text_spans = []
  332. model_page_info = self.__model_list[page_no]
  333. layout_dets = model_page_info["layout_dets"]
  334. for layout_det in layout_dets:
  335. if layout_det["category_id"] == "15":
  336. span = {
  337. "bbox": layout_det['bbox'],
  338. "content": layout_det["text"],
  339. }
  340. text_spans.append(span)
  341. return text_spans
  342. def get_all_spans(self, page_no: int) -> list:
  343. all_spans = []
  344. model_page_info = self.__model_list[page_no]
  345. layout_dets = model_page_info["layout_dets"]
  346. allow_category_id_list = [3, 5, 13, 14, 15]
  347. """当成span拼接的"""
  348. # 3: 'image', # 图片
  349. # 5: 'table', # 表格
  350. # 13: 'inline_equation', # 行内公式
  351. # 14: 'interline_equation', # 行间公式
  352. # 15: 'text', # ocr识别文本
  353. for layout_det in layout_dets:
  354. category_id = layout_det["category_id"]
  355. if category_id in allow_category_id_list:
  356. span = {
  357. "bbox": layout_det['bbox']
  358. }
  359. if category_id == 3:
  360. span["type"] = ContentType.Image
  361. elif category_id == 5:
  362. span["type"] = ContentType.Table
  363. elif category_id == 13:
  364. span["content"] = layout_det["latex"]
  365. span["type"] = ContentType.InlineEquation
  366. elif category_id == 14:
  367. span["content"] = layout_det["latex"]
  368. span["type"] = ContentType.InterlineEquation
  369. elif category_id == 15:
  370. span["content"] = layout_det["text"]
  371. span["type"] = ContentType.Text
  372. all_spans.append(span)
  373. return all_spans
  374. def get_page_size(self, page_no: int): # 获取页面宽高
  375. # 获取当前页的page对象
  376. page = self.__docs[page_no]
  377. # 获取当前页的宽高
  378. page_w = page.rect.width
  379. page_h = page.rect.height
  380. return page_w, page_h
  381. def __get_blocks_by_type(self, type: int, page_no: int, extra_col: list[str] = []) -> list:
  382. blocks = []
  383. for page_dict in self.__model_list:
  384. layout_dets = page_dict.get("layout_dets", [])
  385. page_info = page_dict.get("page_info", {})
  386. page_number = page_info.get("page_no", -1)
  387. if page_no != page_number:
  388. continue
  389. for item in layout_dets:
  390. category_id = item.get("category_id", -1)
  391. bbox = item.get("bbox", None)
  392. if category_id == type:
  393. block = {
  394. "bbox": bbox
  395. }
  396. for col in extra_col:
  397. block[col] = item.get(col, None)
  398. blocks.append(block)
  399. return blocks
  400. if __name__ == "__main__":
  401. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  402. if 0:
  403. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  404. model_file_path = r"linshixuqiu\19983-00_new.json"
  405. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  406. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  407. model_list = json.loads(model_json_txt)
  408. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  409. img_bucket_path = "imgs"
  410. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  411. pdf_docs = fitz.open("pdf", pdf_bytes)
  412. magic_model = MagicModel(model_list, pdf_docs)
  413. if 1:
  414. model_list = json.loads(
  415. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  416. )
  417. pdf_bytes = drw.read(
  418. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  419. )
  420. pdf_docs = fitz.open("pdf", pdf_bytes)
  421. magic_model = MagicModel(model_list, pdf_docs)
  422. for i in range(7):
  423. print(magic_model.get_imgs(i))