magic_model.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import (
  12. _is_in,
  13. bbox_relative_pos,
  14. bbox_distance,
  15. _is_part_overlap,
  16. calculate_overlap_area_in_bbox1_area_ratio,
  17. )
  18. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  19. CAPATION_OVERLAP_AREA_RATIO = 0.6
  20. class MagicModel:
  21. """
  22. 每个函数没有得到元素的时候返回空list
  23. """
  24. def __fix_axis(self):
  25. for model_page_info in self.__model_list:
  26. need_remove_list = []
  27. page_no = model_page_info["page_info"]["page_no"]
  28. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  29. model_page_info, self.__docs[page_no]
  30. )
  31. layout_dets = model_page_info["layout_dets"]
  32. for layout_det in layout_dets:
  33. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  34. bbox = [
  35. int(x0 / horizontal_scale_ratio),
  36. int(y0 / vertical_scale_ratio),
  37. int(x1 / horizontal_scale_ratio),
  38. int(y1 / vertical_scale_ratio),
  39. ]
  40. layout_det["bbox"] = bbox
  41. # 删除高度或者宽度为0的spans
  42. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  43. need_remove_list.append(layout_det)
  44. for need_remove in need_remove_list:
  45. layout_dets.remove(need_remove)
  46. def __fix_by_confidence(self):
  47. for model_page_info in self.__model_list:
  48. need_remove_list = []
  49. layout_dets = model_page_info["layout_dets"]
  50. for layout_det in layout_dets:
  51. if layout_det["score"] <= 0.05:
  52. need_remove_list.append(layout_det)
  53. else:
  54. continue
  55. for need_remove in need_remove_list:
  56. layout_dets.remove(need_remove)
  57. def __init__(self, model_list: list, docs: fitz.Document):
  58. self.__model_list = model_list
  59. self.__docs = docs
  60. self.__fix_axis()
  61. self.__fix_by_confidence()
  62. def __reduct_overlap(self, bboxes):
  63. N = len(bboxes)
  64. keep = [True] * N
  65. for i in range(N):
  66. for j in range(N):
  67. if i == j:
  68. continue
  69. if _is_in(bboxes[i], bboxes[j]):
  70. keep[i] = False
  71. return [bboxes[i] for i in range(N) if keep[i]]
  72. def __tie_up_category_by_distance(
  73. self, page_no, subject_category_id, object_category_id
  74. ):
  75. """
  76. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  77. """
  78. ret = []
  79. MAX_DIS_OF_POINT = 10**9 + 7
  80. def expand_bbox(bbox1, bbox2):
  81. x0 = min(bbox1[0], bbox2[0])
  82. y0 = min(bbox1[1], bbox2[1])
  83. x1 = max(bbox1[2], bbox2[2])
  84. y1 = max(bbox1[3], bbox2[3])
  85. return [x0, y0, x1, y1]
  86. def get_bbox_area(bbox):
  87. return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1])
  88. # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
  89. # 再求出筛选出的 subjects 和 object 的最短距离!
  90. def may_find_other_nearest_bbox(subject_idx, object_idx):
  91. ret = float("inf")
  92. x0, y0, x1, y1 = expand_bbox(
  93. all_bboxes[subject_idx]["bbox"], all_bboxes[object_idx]["bbox"]
  94. )
  95. object_area = get_bbox_area(all_bboxes[object_idx]["bbox"])
  96. for i in range(len(all_bboxes)):
  97. if (
  98. i == subject_idx
  99. or all_bboxes[i]["category_id"] != subject_category_id
  100. ):
  101. continue
  102. if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
  103. all_bboxes[i]["bbox"], [x0, y0, x1, y1]
  104. ):
  105. i_area = get_bbox_area(all_bboxes[i]["bbox"])
  106. if i_area >= object_area:
  107. ret = min(ret, dis[i][object_idx])
  108. return ret
  109. subjects = self.__reduct_overlap(
  110. list(
  111. map(
  112. lambda x: x["bbox"],
  113. filter(
  114. lambda x: x["category_id"] == subject_category_id,
  115. self.__model_list[page_no]["layout_dets"],
  116. ),
  117. )
  118. )
  119. )
  120. objects = self.__reduct_overlap(
  121. list(
  122. map(
  123. lambda x: x["bbox"],
  124. filter(
  125. lambda x: x["category_id"] == object_category_id,
  126. self.__model_list[page_no]["layout_dets"],
  127. ),
  128. )
  129. )
  130. )
  131. subject_object_relation_map = {}
  132. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  133. all_bboxes = []
  134. for v in subjects:
  135. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  136. for v in objects:
  137. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  138. N = len(all_bboxes)
  139. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  140. for i in range(N):
  141. for j in range(i):
  142. if (
  143. all_bboxes[i]["category_id"] == subject_category_id
  144. and all_bboxes[j]["category_id"] == subject_category_id
  145. ):
  146. continue
  147. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  148. dis[j][i] = dis[i][j]
  149. used = set()
  150. for i in range(N):
  151. # 求第 i 个 subject 所关联的 object
  152. if all_bboxes[i]["category_id"] != subject_category_id:
  153. continue
  154. seen = set()
  155. candidates = []
  156. arr = []
  157. for j in range(N):
  158. pos_flag_count = sum(
  159. list(
  160. map(
  161. lambda x: 1 if x else 0,
  162. bbox_relative_pos(
  163. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  164. ),
  165. )
  166. )
  167. )
  168. if pos_flag_count > 1:
  169. continue
  170. if (
  171. all_bboxes[j]["category_id"] != object_category_id
  172. or j in used
  173. or dis[i][j] == MAX_DIS_OF_POINT
  174. ):
  175. continue
  176. arr.append((dis[i][j], j))
  177. arr.sort(key=lambda x: x[0])
  178. if len(arr) > 0:
  179. # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
  180. if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
  181. candidates.append(arr[0][1])
  182. seen.add(arr[0][1])
  183. # 已经获取初始种子
  184. for j in set(candidates):
  185. tmp = []
  186. for k in range(i + 1, N):
  187. pos_flag_count = sum(
  188. list(
  189. map(
  190. lambda x: 1 if x else 0,
  191. bbox_relative_pos(
  192. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  193. ),
  194. )
  195. )
  196. )
  197. if pos_flag_count > 1:
  198. continue
  199. if (
  200. all_bboxes[k]["category_id"] != object_category_id
  201. or k in used
  202. or k in seen
  203. or dis[j][k] == MAX_DIS_OF_POINT
  204. ):
  205. continue
  206. is_nearest = True
  207. for l in range(i + 1, N):
  208. if l in (j, k) or l in used or l in seen:
  209. continue
  210. if not float_gt(dis[l][k], dis[j][k]):
  211. is_nearest = False
  212. break
  213. if is_nearest:
  214. tmp.append(k)
  215. seen.add(k)
  216. candidates = tmp
  217. if len(candidates) == 0:
  218. break
  219. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  220. # 先扩一下 bbox,
  221. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  222. all_bboxes[i]["bbox"][0]
  223. ]
  224. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  225. all_bboxes[i]["bbox"][1]
  226. ]
  227. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  228. all_bboxes[i]["bbox"][2]
  229. ]
  230. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  231. all_bboxes[i]["bbox"][3]
  232. ]
  233. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  234. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  235. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  236. caption_poses = [
  237. [ox0, oy0, ix0, oy1],
  238. [ox0, oy0, ox1, iy0],
  239. [ox0, iy1, ox1, oy1],
  240. [ix1, oy0, ox1, oy1],
  241. ]
  242. caption_areas = []
  243. for bbox in caption_poses:
  244. embed_arr = []
  245. for idx in seen:
  246. if (
  247. calculate_overlap_area_in_bbox1_area_ratio(
  248. all_bboxes[idx]["bbox"], bbox
  249. )
  250. > CAPATION_OVERLAP_AREA_RATIO
  251. ):
  252. embed_arr.append(idx)
  253. if len(embed_arr) > 0:
  254. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  255. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  256. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  257. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  258. caption_areas.append(
  259. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  260. )
  261. else:
  262. caption_areas.append(0)
  263. subject_object_relation_map[i] = []
  264. if max(caption_areas) > 0:
  265. max_area_idx = caption_areas.index(max(caption_areas))
  266. caption_bbox = caption_poses[max_area_idx]
  267. for j in seen:
  268. if (
  269. calculate_overlap_area_in_bbox1_area_ratio(
  270. all_bboxes[j]["bbox"], caption_bbox
  271. )
  272. > CAPATION_OVERLAP_AREA_RATIO
  273. ):
  274. used.add(j)
  275. subject_object_relation_map[i].append(j)
  276. for i in sorted(subject_object_relation_map.keys()):
  277. result = {
  278. "subject_body": all_bboxes[i]["bbox"],
  279. "all": all_bboxes[i]["bbox"],
  280. }
  281. if len(subject_object_relation_map[i]) > 0:
  282. x0 = min(
  283. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  284. )
  285. y0 = min(
  286. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  287. )
  288. x1 = max(
  289. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  290. )
  291. y1 = max(
  292. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  293. )
  294. result["object_body"] = [x0, y0, x1, y1]
  295. result["all"] = [
  296. min(x0, all_bboxes[i]["bbox"][0]),
  297. min(y0, all_bboxes[i]["bbox"][1]),
  298. max(x1, all_bboxes[i]["bbox"][2]),
  299. max(y1, all_bboxes[i]["bbox"][3]),
  300. ]
  301. ret.append(result)
  302. total_subject_object_dis = 0
  303. # 计算已经配对的 distance 距离
  304. for i in subject_object_relation_map.keys():
  305. for j in subject_object_relation_map[i]:
  306. total_subject_object_dis += bbox_distance(
  307. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  308. )
  309. # 计算未匹配的 subject 和 object 的距离(非精确版)
  310. with_caption_subject = set(
  311. [
  312. key
  313. for key in subject_object_relation_map.keys()
  314. if len(subject_object_relation_map[i]) > 0
  315. ]
  316. )
  317. for i in range(N):
  318. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  319. continue
  320. candidates = []
  321. for j in range(N):
  322. if (
  323. all_bboxes[j]["category_id"] != subject_category_id
  324. or j in with_caption_subject
  325. ):
  326. continue
  327. candidates.append((dis[i][j], j))
  328. if len(candidates) > 0:
  329. candidates.sort(key=lambda x: x[0])
  330. total_subject_object_dis += candidates[0][1]
  331. with_caption_subject.add(j)
  332. return ret, total_subject_object_dis
  333. def get_imgs(self, page_no: int): # @许瑞
  334. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  335. return [
  336. {
  337. "bbox": record["all"],
  338. "img_body_bbox": record["subject_body"],
  339. "img_caption_bbox": record.get("object_body", None),
  340. }
  341. for record in records
  342. ]
  343. def get_tables(
  344. self, page_no: int
  345. ) -> list: # 3个坐标, caption, table主体,table-note
  346. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  347. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  348. ret = []
  349. N, M = len(with_captions), len(with_footnotes)
  350. assert N == M
  351. for i in range(N):
  352. record = {
  353. "table_caption_bbox": with_captions[i].get("object_body", None),
  354. "table_body_bbox": with_captions[i]["subject_body"],
  355. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  356. }
  357. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  358. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  359. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  360. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  361. record["bbox"] = [x0, y0, x1, y1]
  362. ret.append(record)
  363. return ret
  364. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  365. inline_equations = self.__get_blocks_by_type(
  366. ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
  367. )
  368. interline_equations = self.__get_blocks_by_type(
  369. ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
  370. )
  371. interline_equations_blocks = self.__get_blocks_by_type(
  372. ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
  373. )
  374. return inline_equations, interline_equations, interline_equations_blocks
  375. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  376. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  377. return blocks
  378. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  379. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  380. return blocks
  381. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  382. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  383. return blocks
  384. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  385. text_spans = []
  386. model_page_info = self.__model_list[page_no]
  387. layout_dets = model_page_info["layout_dets"]
  388. for layout_det in layout_dets:
  389. if layout_det["category_id"] == "15":
  390. span = {
  391. "bbox": layout_det["bbox"],
  392. "content": layout_det["text"],
  393. }
  394. text_spans.append(span)
  395. return text_spans
  396. def get_all_spans(self, page_no: int) -> list:
  397. all_spans = []
  398. model_page_info = self.__model_list[page_no]
  399. layout_dets = model_page_info["layout_dets"]
  400. allow_category_id_list = [3, 5, 13, 14, 15]
  401. """当成span拼接的"""
  402. # 3: 'image', # 图片
  403. # 5: 'table', # 表格
  404. # 13: 'inline_equation', # 行内公式
  405. # 14: 'interline_equation', # 行间公式
  406. # 15: 'text', # ocr识别文本
  407. for layout_det in layout_dets:
  408. category_id = layout_det["category_id"]
  409. if category_id in allow_category_id_list:
  410. span = {"bbox": layout_det["bbox"]}
  411. if category_id == 3:
  412. span["type"] = ContentType.Image
  413. elif category_id == 5:
  414. span["type"] = ContentType.Table
  415. elif category_id == 13:
  416. span["content"] = layout_det["latex"]
  417. span["type"] = ContentType.InlineEquation
  418. elif category_id == 14:
  419. span["content"] = layout_det["latex"]
  420. span["type"] = ContentType.InterlineEquation
  421. elif category_id == 15:
  422. span["content"] = layout_det["text"]
  423. span["type"] = ContentType.Text
  424. all_spans.append(span)
  425. return all_spans
  426. def get_page_size(self, page_no: int): # 获取页面宽高
  427. # 获取当前页的page对象
  428. page = self.__docs[page_no]
  429. # 获取当前页的宽高
  430. page_w = page.rect.width
  431. page_h = page.rect.height
  432. return page_w, page_h
  433. def __get_blocks_by_type(
  434. self, type: int, page_no: int, extra_col: list[str] = []
  435. ) -> list:
  436. blocks = []
  437. for page_dict in self.__model_list:
  438. layout_dets = page_dict.get("layout_dets", [])
  439. page_info = page_dict.get("page_info", {})
  440. page_number = page_info.get("page_no", -1)
  441. if page_no != page_number:
  442. continue
  443. for item in layout_dets:
  444. category_id = item.get("category_id", -1)
  445. bbox = item.get("bbox", None)
  446. if category_id == type:
  447. block = {"bbox": bbox}
  448. for col in extra_col:
  449. block[col] = item.get(col, None)
  450. blocks.append(block)
  451. return blocks
  452. if __name__ == "__main__":
  453. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  454. if 0:
  455. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  456. model_file_path = r"linshixuqiu\19983-00_new.json"
  457. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  458. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  459. model_list = json.loads(model_json_txt)
  460. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  461. img_bucket_path = "imgs"
  462. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  463. pdf_docs = fitz.open("pdf", pdf_bytes)
  464. magic_model = MagicModel(model_list, pdf_docs)
  465. if 1:
  466. model_list = json.loads(
  467. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  468. )
  469. pdf_bytes = drw.read(
  470. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  471. )
  472. pdf_docs = fitz.open("pdf", pdf_bytes)
  473. magic_model = MagicModel(model_list, pdf_docs)
  474. for i in range(7):
  475. print(magic_model.get_imgs(i))