| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- """
- 去掉正文的引文引用marker
- https://aicarrier.feishu.cn/wiki/YLOPwo1PGiwFRdkwmyhcZmr0n3d
- """
- import re
- # from magic_pdf.libs.nlp_utils import NLPModels
- # __NLP_MODEL = NLPModels()
- def check_1(spans, cur_span_i):
- """寻找前一个char,如果是句号,逗号,那么就是角标"""
- if cur_span_i==0:
- return False # 不是角标
- pre_span = spans[cur_span_i-1]
- pre_char = pre_span['chars'][-1]['c']
- if pre_char in ['。', ',', '.', ',']:
- return True
-
- return False
- # def check_2(spans, cur_span_i):
- # """检查前面一个span的最后一个单词,如果长度大于5,全都是字母,并且不含大写,就是角标"""
- # pattern = r'\b[A-Z]\.\s[A-Z][a-z]*\b' # 形如A. Bcde, L. Bcde, 人名的缩写
- #
- # if cur_span_i==0 and len(spans)>1:
- # next_span = spans[cur_span_i+1]
- # next_txt = "".join([c['c'] for c in next_span['chars']])
- # result = __NLP_MODEL.detect_entity_catgr_using_nlp(next_txt)
- # if result in ["PERSON", "GPE", "ORG"]:
- # return True
- #
- # if re.findall(pattern, next_txt):
- # return True
- #
- # return False # 不是角标
- # elif cur_span_i==0 and len(spans)==1: # 角标占用了整行?谨慎删除
- # return False
- #
- # # 如果这个span是最后一个span,
- # if cur_span_i==len(spans)-1:
- # pre_span = spans[cur_span_i-1]
- # pre_txt = "".join([c['c'] for c in pre_span['chars']])
- # pre_word = pre_txt.split(' ')[-1]
- # result = __NLP_MODEL.detect_entity_catgr_using_nlp(pre_txt)
- # if result in ["PERSON", "GPE", "ORG"]:
- # return True
- #
- # if re.findall(pattern, pre_txt):
- # return True
- #
- # return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower()
- # else: # 既不是第一个span,也不是最后一个span,那么此时检查一下这个角标距离前后哪个单词更近就属于谁的角标
- # pre_span = spans[cur_span_i-1]
- # next_span = spans[cur_span_i+1]
- # cur_span = spans[cur_span_i]
- # # 找到前一个和后一个span里的距离最近的单词
- # pre_distance = 10000 # 一个很大的数
- # next_distance = 10000 # 一个很大的数
- # for c in pre_span['chars'][::-1]:
- # if c['c'].isalpha():
- # pre_distance = cur_span['bbox'][0] - c['bbox'][2]
- # break
- # for c in next_span['chars']:
- # if c['c'].isalpha():
- # next_distance = c['bbox'][0] - cur_span['bbox'][2]
- # break
- #
- # if pre_distance<next_distance:
- # belong_to_span = pre_span
- # else:
- # belong_to_span = next_span
- #
- # txt = "".join([c['c'] for c in belong_to_span['chars']])
- # pre_word = txt.split(' ')[-1]
- # result = __NLP_MODEL.detect_entity_catgr_using_nlp(txt)
- # if result in ["PERSON", "GPE", "ORG"]:
- # return True
- #
- # if re.findall(pattern, txt):
- # return True
- #
- # return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower()
- def check_3(spans, cur_span_i):
- """上标里有[], 有*, 有-, 有逗号"""
- # 如[2-3],[22]
- # 如 2,3,4
- cur_span_txt = ''.join(c['c'] for c in spans[cur_span_i]['chars']).strip()
- bad_char = ['[', ']', '*', ',']
- if any([c in cur_span_txt for c in bad_char]) and any(character.isdigit() for character in cur_span_txt):
- return True
- # 如2-3, a-b
- patterns = [r'\d+-\d+', r'[a-zA-Z]-[a-zA-Z]', r'[a-zA-Z],[a-zA-Z]']
- for pattern in patterns:
- match = re.match(pattern, cur_span_txt)
- if match is not None:
- return True
- return False
- def remove_citation_marker(with_char_text_blcoks):
- for blk in with_char_text_blcoks:
- for line in blk['lines']:
- # 如果span里的个数少于2个,那只能忽略,角标不可能自己独占一行
- if len(line['spans'])<=1:
- continue
- # 找到高度最高的span作为位置比较的基准
- max_hi_span = line['spans'][0]['bbox']
- min_font_sz = 10000 # line里最小的字体
- max_font_sz = 0 # line里最大的字体
-
- for s in line['spans']:
- if max_hi_span[3]-max_hi_span[1]<s['bbox'][3]-s['bbox'][1]:
- max_hi_span = s['bbox']
- if min_font_sz>s['size']:
- min_font_sz = s['size']
- if max_font_sz<s['size']:
- max_font_sz = s['size']
-
- base_span_mid_y = (max_hi_span[3]+max_hi_span[1])/2
-
-
- span_to_del = []
- for i, span in enumerate(line['spans']):
- span_hi = span['bbox'][3]-span['bbox'][1]
- span_mid_y = (span['bbox'][3]+span['bbox'][1])/2
- span_font_sz = span['size']
-
- if max_font_sz-span_font_sz<1: # 先以字体过滤正文,如果是正文就不再继续判断了
- continue
- # 对被除数为0的情况进行过滤
- if span_hi==0 or min_font_sz==0:
- continue
- if (base_span_mid_y-span_mid_y)/span_hi>0.2 or (base_span_mid_y-span_mid_y>0 and abs(span_font_sz-min_font_sz)/min_font_sz<0.1):
- """
- 1. 它的前一个char如果是句号或者逗号的话,那么肯定是角标而不是公式
- 2. 如果这个角标的前面是一个单词(长度大于5)而不是任何大写或小写的短字母的话 应该也是角标
- 3. 上标里有数字和逗号或者数字+星号的组合,方括号,一般肯定就是角标了
- 4. 这个角标属于前文还是后文要根据距离来判断,如果距离前面的文本太近,那么就是前面的角标,否则就是后面的角标
- """
- if (check_1(line['spans'], i) or
- # check_2(line['spans'], i) or
- check_3(line['spans'], i)
- ):
- """删除掉这个角标:删除这个span, 同时还要更新line的text"""
- span_to_del.append(span)
- if len(span_to_del)>0:
- for span in span_to_del:
- line['spans'].remove(span)
- line['text'] = ''.join([c['c'] for s in line['spans'] for c in s['chars']])
-
- return with_char_text_blcoks
|