ocr_span_list_modify.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. from loguru import logger
  2. from magic_pdf.libs.boxbase import calculate_overlap_area_in_bbox1_area_ratio, get_minbox_if_overlap_by_ratio, \
  3. __is_overlaps_y_exceeds_threshold, calculate_iou
  4. from magic_pdf.libs.drop_tag import DropTag
  5. from magic_pdf.libs.ocr_content_type import ContentType, BlockType
  6. def remove_overlaps_low_confidence_spans(spans):
  7. dropped_spans = []
  8. # 删除重叠spans中置信度低的的那些
  9. for span1 in spans:
  10. for span2 in spans:
  11. if span1 != span2:
  12. # span1 或 span2 任何一个都不应该在 dropped_spans 中
  13. if span1 in dropped_spans or span2 in dropped_spans:
  14. continue
  15. else:
  16. if calculate_iou(span1['bbox'], span2['bbox']) > 0.9:
  17. if span1['score'] < span2['score']:
  18. span_need_remove = span1
  19. else:
  20. span_need_remove = span2
  21. if span_need_remove is not None and span_need_remove not in dropped_spans:
  22. dropped_spans.append(span_need_remove)
  23. if len(dropped_spans) > 0:
  24. for span_need_remove in dropped_spans:
  25. spans.remove(span_need_remove)
  26. span_need_remove['tag'] = DropTag.SPAN_OVERLAP
  27. return spans, dropped_spans
  28. def remove_overlaps_min_spans(spans):
  29. dropped_spans = []
  30. # 删除重叠spans中较小的那些
  31. for span1 in spans:
  32. for span2 in spans:
  33. if span1 != span2:
  34. overlap_box = get_minbox_if_overlap_by_ratio(span1['bbox'], span2['bbox'], 0.65)
  35. if overlap_box is not None:
  36. span_need_remove = next((span for span in spans if span['bbox'] == overlap_box), None)
  37. if span_need_remove is not None and span_need_remove not in dropped_spans:
  38. dropped_spans.append(span_need_remove)
  39. if len(dropped_spans) > 0:
  40. for span_need_remove in dropped_spans:
  41. spans.remove(span_need_remove)
  42. span_need_remove['tag'] = DropTag.SPAN_OVERLAP
  43. return spans, dropped_spans
  44. def remove_spans_by_bboxes(spans, need_remove_spans_bboxes):
  45. # 遍历spans, 判断是否在removed_span_block_bboxes中
  46. # 如果是, 则删除该span 否则, 保留该span
  47. need_remove_spans = []
  48. for span in spans:
  49. for removed_bbox in need_remove_spans_bboxes:
  50. if calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], removed_bbox) > 0.5:
  51. if span not in need_remove_spans:
  52. need_remove_spans.append(span)
  53. break
  54. if len(need_remove_spans) > 0:
  55. for span in need_remove_spans:
  56. spans.remove(span)
  57. return spans
  58. def remove_spans_by_bboxes_dict(spans, need_remove_spans_bboxes_dict):
  59. dropped_spans = []
  60. for drop_tag, removed_bboxes in need_remove_spans_bboxes_dict.items():
  61. # logger.info(f"remove spans by bbox dict, drop_tag: {drop_tag}, removed_bboxes: {removed_bboxes}")
  62. need_remove_spans = []
  63. for span in spans:
  64. # 通过判断span的bbox是否在removed_bboxes中, 判断是否需要删除该span
  65. for removed_bbox in removed_bboxes:
  66. if calculate_overlap_area_in_bbox1_area_ratio(span['bbox'], removed_bbox) > 0.5:
  67. need_remove_spans.append(span)
  68. break
  69. # 当drop_tag为DropTag.FOOTNOTE时, 判断span是否在removed_bboxes中任意一个的下方,如果是,则删除该span
  70. elif drop_tag == DropTag.FOOTNOTE and (span['bbox'][1] + span['bbox'][3]) / 2 > removed_bbox[3] and \
  71. removed_bbox[0] < (span['bbox'][0] + span['bbox'][2]) / 2 < removed_bbox[2]:
  72. need_remove_spans.append(span)
  73. break
  74. for span in need_remove_spans:
  75. spans.remove(span)
  76. span['tag'] = drop_tag
  77. dropped_spans.append(span)
  78. return spans, dropped_spans
  79. def adjust_bbox_for_standalone_block(spans):
  80. # 对tpye=["interline_equation", "image", "table"]进行额外处理,如果左边有字的话,将该span的bbox中y0调整至不高于文字的y0
  81. for sb_span in spans:
  82. if sb_span['type'] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table]:
  83. for text_span in spans:
  84. if text_span['type'] in [ContentType.Text, ContentType.InlineEquation]:
  85. # 判断span2的纵向高度是否被span所覆盖
  86. if sb_span['bbox'][1] < text_span['bbox'][1] and sb_span['bbox'][3] > text_span['bbox'][3]:
  87. # 判断span2是否在span左边
  88. if text_span['bbox'][0] < sb_span['bbox'][0]:
  89. # 调整span的y0和span2的y0一致
  90. sb_span['bbox'][1] = text_span['bbox'][1]
  91. return spans
  92. def modify_y_axis(spans: list, displayed_list: list, text_inline_lines: list):
  93. # displayed_list = []
  94. # 如果spans为空,则不处理
  95. if len(spans) == 0:
  96. pass
  97. else:
  98. spans.sort(key=lambda span: span['bbox'][1])
  99. lines = []
  100. current_line = [spans[0]]
  101. if spans[0]["type"] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table]:
  102. displayed_list.append(spans[0])
  103. line_first_y0 = spans[0]["bbox"][1]
  104. line_first_y = spans[0]["bbox"][3]
  105. # 用于给行间公式搜索
  106. # text_inline_lines = []
  107. for span in spans[1:]:
  108. # if span.get("content","") == "78.":
  109. # print("debug")
  110. # 如果当前的span类型为"interline_equation" 或者 当前行中已经有"interline_equation"
  111. # image和table类型,同上
  112. if span['type'] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table] or any(
  113. s['type'] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table] for s in
  114. current_line):
  115. # 传入
  116. if span["type"] in [ContentType.InterlineEquation, ContentType.Image, ContentType.Table]:
  117. displayed_list.append(span)
  118. # 则开始新行
  119. lines.append(current_line)
  120. if len(current_line) > 1 or current_line[0]["type"] in [ContentType.Text, ContentType.InlineEquation]:
  121. text_inline_lines.append((current_line, (line_first_y0, line_first_y)))
  122. current_line = [span]
  123. line_first_y0 = span["bbox"][1]
  124. line_first_y = span["bbox"][3]
  125. continue
  126. # 如果当前的span与当前行的最后一个span在y轴上重叠,则添加到当前行
  127. if __is_overlaps_y_exceeds_threshold(span['bbox'], current_line[-1]['bbox']):
  128. if span["type"] == "text":
  129. line_first_y0 = span["bbox"][1]
  130. line_first_y = span["bbox"][3]
  131. current_line.append(span)
  132. else:
  133. # 否则,开始新行
  134. lines.append(current_line)
  135. text_inline_lines.append((current_line, (line_first_y0, line_first_y)))
  136. current_line = [span]
  137. line_first_y0 = span["bbox"][1]
  138. line_first_y = span["bbox"][3]
  139. # 添加最后一行
  140. if current_line:
  141. lines.append(current_line)
  142. if len(current_line) > 1 or current_line[0]["type"] in [ContentType.Text, ContentType.InlineEquation]:
  143. text_inline_lines.append((current_line, (line_first_y0, line_first_y)))
  144. for line in text_inline_lines:
  145. # 按照x0坐标排序
  146. current_line = line[0]
  147. current_line.sort(key=lambda span: span['bbox'][0])
  148. # 调整每一个文字行内bbox统一
  149. for line in text_inline_lines:
  150. current_line, (line_first_y0, line_first_y) = line
  151. for span in current_line:
  152. span["bbox"][1] = line_first_y0
  153. span["bbox"][3] = line_first_y
  154. # return spans, displayed_list, text_inline_lines
  155. def modify_inline_equation(spans: list, displayed_list: list, text_inline_lines: list):
  156. # 错误行间公式转行内公式
  157. j = 0
  158. for i in range(len(displayed_list)):
  159. # if i == 8:
  160. # print("debug")
  161. span = displayed_list[i]
  162. span_y0, span_y = span["bbox"][1], span["bbox"][3]
  163. while j < len(text_inline_lines):
  164. text_line = text_inline_lines[j]
  165. y0, y1 = text_line[1]
  166. if (
  167. span_y0 < y0 < span_y or span_y0 < y1 < span_y or span_y0 < y0 and span_y > y1
  168. ) and __is_overlaps_y_exceeds_threshold(
  169. span['bbox'], (0, y0, 0, y1)
  170. ):
  171. # 调整公式类型
  172. if span["type"] == ContentType.InterlineEquation:
  173. # 最后一行是行间公式
  174. if j + 1 >= len(text_inline_lines):
  175. span["type"] = ContentType.InlineEquation
  176. span["bbox"][1] = y0
  177. span["bbox"][3] = y1
  178. else:
  179. # 行间公式旁边有多行文字或者行间公式比文字高3倍则不转换
  180. y0_next, y1_next = text_inline_lines[j + 1][1]
  181. if not __is_overlaps_y_exceeds_threshold(span['bbox'], (0, y0_next, 0, y1_next)) and 3 * (
  182. y1 - y0) > span_y - span_y0:
  183. span["type"] = ContentType.InlineEquation
  184. span["bbox"][1] = y0
  185. span["bbox"][3] = y1
  186. break
  187. elif span_y < y0 or span_y0 < y0 < span_y and not __is_overlaps_y_exceeds_threshold(span['bbox'],
  188. (0, y0, 0, y1)):
  189. break
  190. else:
  191. j += 1
  192. return spans
  193. def get_qa_need_list(blocks):
  194. # 创建 images, tables, interline_equations, inline_equations 的副本
  195. images = []
  196. tables = []
  197. interline_equations = []
  198. inline_equations = []
  199. for block in blocks:
  200. for line in block["lines"]:
  201. for span in line["spans"]:
  202. if span["type"] == ContentType.Image:
  203. images.append(span)
  204. elif span["type"] == ContentType.Table:
  205. tables.append(span)
  206. elif span["type"] == ContentType.InlineEquation:
  207. inline_equations.append(span)
  208. elif span["type"] == ContentType.InterlineEquation:
  209. interline_equations.append(span)
  210. else:
  211. continue
  212. return images, tables, interline_equations, inline_equations
  213. def get_qa_need_list_v2(blocks):
  214. # 创建 images, tables, interline_equations, inline_equations 的副本
  215. images = []
  216. tables = []
  217. interline_equations = []
  218. for block in blocks:
  219. if block["type"] == BlockType.Image:
  220. images.append(block)
  221. elif block["type"] == BlockType.Table:
  222. tables.append(block)
  223. elif block["type"] == BlockType.InterlineEquation:
  224. interline_equations.append(block)
  225. return images, tables, interline_equations