pdf_extract_kit.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. from loguru import logger
  2. import os
  3. import time
  4. from pypandoc import convert_text
  5. os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
  6. try:
  7. import cv2
  8. import yaml
  9. import argparse
  10. import numpy as np
  11. import torch
  12. import torchtext
  13. if torchtext.__version__ >= "0.18.0":
  14. torchtext.disable_torchtext_deprecation_warning()
  15. from PIL import Image
  16. from torchvision import transforms
  17. from torch.utils.data import Dataset, DataLoader
  18. from ultralytics import YOLO
  19. from unimernet.common.config import Config
  20. import unimernet.tasks as tasks
  21. from unimernet.processors import load_processor
  22. except ImportError as e:
  23. logger.exception(e)
  24. logger.error(
  25. 'Required dependency not installed, please install by \n'
  26. '"pip install magic-pdf[full] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
  27. exit(1)
  28. from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
  29. from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
  30. from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
  31. from magic_pdf.model.pek_sub_modules.structeqtable.StructTableModel import StructTableModel
  32. def table_model_init(model_path, _device_ = 'cpu'):
  33. table_model = StructTableModel(model_path, device = _device_)
  34. return table_model
  35. def mfd_model_init(weight):
  36. mfd_model = YOLO(weight)
  37. return mfd_model
  38. def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
  39. args = argparse.Namespace(cfg_path=cfg_path, options=None)
  40. cfg = Config(args)
  41. cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
  42. cfg.config.model.model_config.model_name = weight_dir
  43. cfg.config.model.tokenizer_config.path = weight_dir
  44. task = tasks.setup_task(cfg)
  45. model = task.build_model(cfg)
  46. model = model.to(_device_)
  47. vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
  48. return model, vis_processor
  49. def layout_model_init(weight, config_file, device):
  50. model = Layoutlmv3_Predictor(weight, config_file, device)
  51. return model
  52. class MathDataset(Dataset):
  53. def __init__(self, image_paths, transform=None):
  54. self.image_paths = image_paths
  55. self.transform = transform
  56. def __len__(self):
  57. return len(self.image_paths)
  58. def __getitem__(self, idx):
  59. # if not pil image, then convert to pil image
  60. if isinstance(self.image_paths[idx], str):
  61. raw_image = Image.open(self.image_paths[idx])
  62. else:
  63. raw_image = self.image_paths[idx]
  64. if self.transform:
  65. image = self.transform(raw_image)
  66. return image
  67. class CustomPEKModel:
  68. def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
  69. """
  70. ======== model init ========
  71. """
  72. # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
  73. current_file_path = os.path.abspath(__file__)
  74. # 获取当前文件所在的目录(model)
  75. current_dir = os.path.dirname(current_file_path)
  76. # 上一级目录(magic_pdf)
  77. root_dir = os.path.dirname(current_dir)
  78. # model_config目录
  79. model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
  80. # 构建 model_configs.yaml 文件的完整路径
  81. config_path = os.path.join(model_config_dir, 'model_configs.yaml')
  82. with open(config_path, "r", encoding='utf-8') as f:
  83. self.configs = yaml.load(f, Loader=yaml.FullLoader)
  84. # 初始化解析配置
  85. self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
  86. self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
  87. self.apply_table = kwargs.get("table_mode", self.configs["config"]["table"])
  88. self.apply_ocr = ocr
  89. logger.info(
  90. "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
  91. self.apply_layout, self.apply_formula, self.apply_ocr
  92. )
  93. )
  94. assert self.apply_layout, "DocAnalysis must contain layout model."
  95. # 初始化解析方案
  96. self.device = kwargs.get("device", self.configs["config"]["device"])
  97. logger.info("using device: {}".format(self.device))
  98. models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
  99. logger.info("using models_dir: {}".format(models_dir))
  100. # 初始化公式识别
  101. if self.apply_formula:
  102. # 初始化公式检测模型
  103. self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
  104. # 初始化公式解析模型
  105. mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
  106. mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
  107. self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
  108. self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
  109. # 初始化layout模型
  110. self.layout_model = Layoutlmv3_Predictor(
  111. str(os.path.join(models_dir, self.configs['weights']['layout'])),
  112. str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
  113. device=self.device
  114. )
  115. # 初始化ocr
  116. if self.apply_ocr:
  117. self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
  118. # init structeqtable
  119. if self.apply_table:
  120. self.table_model = table_model_init(str(os.path.join(models_dir, self.configs["weights"]["table"])), _device_=self.device)
  121. logger.info('DocAnalysis init done!')
  122. def __call__(self, image):
  123. latex_filling_list = []
  124. mf_image_list = []
  125. # layout检测
  126. layout_start = time.time()
  127. layout_res = self.layout_model(image, ignore_catids=[])
  128. layout_cost = round(time.time() - layout_start, 2)
  129. logger.info(f"layout detection cost: {layout_cost}")
  130. if self.apply_formula:
  131. # 公式检测
  132. mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
  133. for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
  134. xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
  135. new_item = {
  136. 'category_id': 13 + int(cla.item()),
  137. 'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
  138. 'score': round(float(conf.item()), 2),
  139. 'latex': '',
  140. }
  141. layout_res.append(new_item)
  142. latex_filling_list.append(new_item)
  143. bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
  144. mf_image_list.append(bbox_img)
  145. # 公式识别
  146. mfr_start = time.time()
  147. dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
  148. dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
  149. mfr_res = []
  150. for mf_img in dataloader:
  151. mf_img = mf_img.to(self.device)
  152. output = self.mfr_model.generate({'image': mf_img})
  153. mfr_res.extend(output['pred_str'])
  154. for res, latex in zip(latex_filling_list, mfr_res):
  155. res['latex'] = latex_rm_whitespace(latex)
  156. mfr_cost = round(time.time() - mfr_start, 2)
  157. logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
  158. # ocr识别
  159. if self.apply_ocr:
  160. ocr_start = time.time()
  161. pil_img = Image.fromarray(image)
  162. # 筛选出需要OCR的区域和公式区域
  163. ocr_res_list = []
  164. single_page_mfdetrec_res = []
  165. for res in layout_res:
  166. if int(res['category_id']) in [13, 14]:
  167. single_page_mfdetrec_res.append({
  168. "bbox": [int(res['poly'][0]), int(res['poly'][1]),
  169. int(res['poly'][4]), int(res['poly'][5])],
  170. })
  171. elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
  172. ocr_res_list.append(res)
  173. # 对每一个需OCR处理的区域进行处理
  174. for res in ocr_res_list:
  175. xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
  176. xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
  177. paste_x = 50
  178. paste_y = 50
  179. # 创建一个宽高各多50的白色背景
  180. new_width = xmax - xmin + paste_x * 2
  181. new_height = ymax - ymin + paste_y * 2
  182. new_image = Image.new('RGB', (new_width, new_height), 'white')
  183. # 裁剪图像
  184. crop_box = (xmin, ymin, xmax, ymax)
  185. cropped_img = pil_img.crop(crop_box)
  186. new_image.paste(cropped_img, (paste_x, paste_y))
  187. # 调整公式区域坐标
  188. adjusted_mfdetrec_res = []
  189. for mf_res in single_page_mfdetrec_res:
  190. mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
  191. # 将公式区域坐标调整为相对于裁剪区域的坐标
  192. x0 = mf_xmin - xmin + paste_x
  193. y0 = mf_ymin - ymin + paste_y
  194. x1 = mf_xmax - xmin + paste_x
  195. y1 = mf_ymax - ymin + paste_y
  196. # 过滤在图外的公式块
  197. if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
  198. continue
  199. else:
  200. adjusted_mfdetrec_res.append({
  201. "bbox": [x0, y0, x1, y1],
  202. })
  203. # OCR识别
  204. new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
  205. ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
  206. # 整合结果
  207. if ocr_res:
  208. for box_ocr_res in ocr_res:
  209. p1, p2, p3, p4 = box_ocr_res[0]
  210. text, score = box_ocr_res[1]
  211. # 将坐标转换回原图坐标系
  212. p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
  213. p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
  214. p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
  215. p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]
  216. layout_res.append({
  217. 'category_id': 15,
  218. 'poly': p1 + p2 + p3 + p4,
  219. 'score': round(score, 2),
  220. 'text': text,
  221. })
  222. ocr_cost = round(time.time() - ocr_start, 2)
  223. logger.info(f"ocr cost: {ocr_cost}")
  224. # 表格识别 table recognition
  225. if self.apply_table:
  226. pil_img = Image.fromarray(image)
  227. for layout in layout_res:
  228. if layout.get("category_id", -1) == 5:
  229. poly = layout["poly"]
  230. xmin, ymin = int(poly[0]), int(poly[1])
  231. xmax, ymax = int(poly[4]), int(poly[5])
  232. paste_x = 50
  233. paste_y = 50
  234. # 创建一个宽高各多50的白色背景 create a whiteboard with 50 larger width and length
  235. new_width = xmax - xmin + paste_x * 2
  236. new_height = ymax - ymin + paste_y * 2
  237. new_image = Image.new('RGB', (new_width, new_height), 'white')
  238. # 裁剪图像 crop image
  239. crop_box = (xmin, ymin, xmax, ymax)
  240. cropped_img = pil_img.crop(crop_box)
  241. new_image.paste(cropped_img, (paste_x, paste_y))
  242. start_time = time.time()
  243. print("------------------table recognition processing begins-----------------")
  244. latex_code = self.table_model.image2latex(new_image)[0]
  245. end_time = time.time()
  246. run_time = end_time - start_time
  247. print(f"------------table recognition processing ends within {run_time}s-----")
  248. layout["latex"] = latex_code
  249. return layout_res