pdf_extract_kit.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. from loguru import logger
  2. import os
  3. import time
  4. os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1' # 禁止albumentations检查更新
  5. try:
  6. import cv2
  7. import yaml
  8. import argparse
  9. import numpy as np
  10. import torch
  11. from paddleocr import draw_ocr
  12. from PIL import Image
  13. from torchvision import transforms
  14. from torch.utils.data import Dataset, DataLoader
  15. from ultralytics import YOLO
  16. from unimernet.common.config import Config
  17. import unimernet.tasks as tasks
  18. from unimernet.processors import load_processor
  19. except ImportError as e:
  20. logger.exception(e)
  21. logger.error(
  22. 'Required dependency not installed, please install by \n'
  23. '"pip install magic-pdf[full] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
  24. exit(1)
  25. from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
  26. from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
  27. from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR
  28. def mfd_model_init(weight):
  29. mfd_model = YOLO(weight)
  30. return mfd_model
  31. def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
  32. args = argparse.Namespace(cfg_path=cfg_path, options=None)
  33. cfg = Config(args)
  34. cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
  35. cfg.config.model.model_config.model_name = weight_dir
  36. cfg.config.model.tokenizer_config.path = weight_dir
  37. task = tasks.setup_task(cfg)
  38. model = task.build_model(cfg)
  39. model = model.to(_device_)
  40. vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
  41. return model, vis_processor
  42. def layout_model_init(weight, config_file, device):
  43. model = Layoutlmv3_Predictor(weight, config_file, device)
  44. return model
  45. class MathDataset(Dataset):
  46. def __init__(self, image_paths, transform=None):
  47. self.image_paths = image_paths
  48. self.transform = transform
  49. def __len__(self):
  50. return len(self.image_paths)
  51. def __getitem__(self, idx):
  52. # if not pil image, then convert to pil image
  53. if isinstance(self.image_paths[idx], str):
  54. raw_image = Image.open(self.image_paths[idx])
  55. else:
  56. raw_image = self.image_paths[idx]
  57. if self.transform:
  58. image = self.transform(raw_image)
  59. return image
  60. class CustomPEKModel:
  61. def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
  62. """
  63. ======== model init ========
  64. """
  65. # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
  66. current_file_path = os.path.abspath(__file__)
  67. # 获取当前文件所在的目录(model)
  68. current_dir = os.path.dirname(current_file_path)
  69. # 上一级目录(magic_pdf)
  70. root_dir = os.path.dirname(current_dir)
  71. # model_config目录
  72. model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
  73. # 构建 model_configs.yaml 文件的完整路径
  74. config_path = os.path.join(model_config_dir, 'model_configs.yaml')
  75. with open(config_path, "r") as f:
  76. self.configs = yaml.load(f, Loader=yaml.FullLoader)
  77. # 初始化解析配置
  78. self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
  79. self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
  80. self.apply_ocr = ocr
  81. logger.info(
  82. "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
  83. self.apply_layout, self.apply_formula, self.apply_ocr
  84. )
  85. )
  86. assert self.apply_layout, "DocAnalysis must contain layout model."
  87. # 初始化解析方案
  88. self.device = kwargs.get("device", self.configs["config"]["device"])
  89. logger.info("using device: {}".format(self.device))
  90. models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
  91. logger.info("using models_dir: {}".format(models_dir))
  92. # 初始化公式识别
  93. if self.apply_formula:
  94. # 初始化公式检测模型
  95. self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))
  96. # 初始化公式解析模型
  97. mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
  98. mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
  99. self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
  100. self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
  101. # 初始化layout模型
  102. self.layout_model = Layoutlmv3_Predictor(
  103. str(os.path.join(models_dir, self.configs['weights']['layout'])),
  104. str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
  105. device=self.device
  106. )
  107. # 初始化ocr
  108. if self.apply_ocr:
  109. self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
  110. logger.info('DocAnalysis init done!')
  111. def __call__(self, image):
  112. latex_filling_list = []
  113. mf_image_list = []
  114. # layout检测
  115. layout_start = time.time()
  116. layout_res = self.layout_model(image, ignore_catids=[])
  117. layout_cost = round(time.time() - layout_start, 2)
  118. logger.info(f"layout detection cost: {layout_cost}")
  119. if self.apply_formula:
  120. # 公式检测
  121. mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
  122. for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
  123. xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
  124. new_item = {
  125. 'category_id': 13 + int(cla.item()),
  126. 'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
  127. 'score': round(float(conf.item()), 2),
  128. 'latex': '',
  129. }
  130. layout_res.append(new_item)
  131. latex_filling_list.append(new_item)
  132. bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
  133. mf_image_list.append(bbox_img)
  134. # 公式识别
  135. mfr_start = time.time()
  136. dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
  137. dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
  138. mfr_res = []
  139. for mf_img in dataloader:
  140. mf_img = mf_img.to(self.device)
  141. output = self.mfr_model.generate({'image': mf_img})
  142. mfr_res.extend(output['pred_str'])
  143. for res, latex in zip(latex_filling_list, mfr_res):
  144. res['latex'] = latex_rm_whitespace(latex)
  145. mfr_cost = round(time.time() - mfr_start, 2)
  146. logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
  147. # ocr识别
  148. if self.apply_ocr:
  149. ocr_start = time.time()
  150. pil_img = Image.fromarray(image)
  151. # 筛选出需要OCR的区域和公式区域
  152. ocr_res_list = []
  153. single_page_mfdetrec_res = []
  154. for res in layout_res:
  155. if int(res['category_id']) in [13, 14]:
  156. single_page_mfdetrec_res.append({
  157. "bbox": [int(res['poly'][0]), int(res['poly'][1]),
  158. int(res['poly'][4]), int(res['poly'][5])],
  159. })
  160. elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
  161. ocr_res_list.append(res)
  162. # 对每一个需OCR处理的区域进行处理
  163. for res in ocr_res_list:
  164. xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
  165. xmax, ymax = int(res['poly'][4]), int(res['poly'][5])
  166. paste_x = 50
  167. paste_y = 50
  168. # 创建一个宽高各多50的白色背景
  169. new_width = xmax - xmin + paste_x * 2
  170. new_height = ymax - ymin + paste_y * 2
  171. new_image = Image.new('RGB', (new_width, new_height), 'white')
  172. # 裁剪图像
  173. crop_box = (xmin, ymin, xmax, ymax)
  174. cropped_img = pil_img.crop(crop_box)
  175. new_image.paste(cropped_img, (paste_x, paste_y))
  176. # 调整公式区域坐标
  177. adjusted_mfdetrec_res = []
  178. for mf_res in single_page_mfdetrec_res:
  179. mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
  180. # 将公式区域坐标调整为相对于裁剪区域的坐标
  181. x0 = mf_xmin - xmin + paste_x
  182. y0 = mf_ymin - ymin + paste_y
  183. x1 = mf_xmax - xmin + paste_x
  184. y1 = mf_ymax - ymin + paste_y
  185. # 过滤在图外的公式块
  186. if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
  187. continue
  188. else:
  189. adjusted_mfdetrec_res.append({
  190. "bbox": [x0, y0, x1, y1],
  191. })
  192. # OCR识别
  193. new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
  194. ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
  195. # 整合结果
  196. if ocr_res:
  197. for box_ocr_res in ocr_res:
  198. p1, p2, p3, p4 = box_ocr_res[0]
  199. text, score = box_ocr_res[1]
  200. # 将坐标转换回原图坐标系
  201. p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
  202. p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
  203. p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
  204. p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]
  205. layout_res.append({
  206. 'category_id': 15,
  207. 'poly': p1 + p2 + p3 + p4,
  208. 'score': round(score, 2),
  209. 'text': text,
  210. })
  211. ocr_cost = round(time.time() - ocr_start, 2)
  212. logger.info(f"ocr cost: {ocr_cost}")
  213. return layout_res