pdf_parse_union_core_v2.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. import statistics
  2. import time
  3. from loguru import logger
  4. from typing import List
  5. import torch
  6. from magic_pdf.libs.clean_memory import clean_memory
  7. from magic_pdf.libs.commons import fitz, get_delta_time
  8. from magic_pdf.libs.convert_utils import dict_to_list
  9. from magic_pdf.libs.drop_reason import DropReason
  10. from magic_pdf.libs.hash_utils import compute_md5
  11. from magic_pdf.libs.local_math import float_equal
  12. from magic_pdf.libs.ocr_content_type import ContentType
  13. from magic_pdf.model.magic_model import MagicModel
  14. from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
  15. from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
  16. from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
  17. from magic_pdf.pre_proc.equations_replace import remove_chars_in_text_blocks, replace_equations_in_textblock, \
  18. combine_chars_to_pymudict
  19. from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split_v2
  20. from magic_pdf.pre_proc.ocr_dict_merge import fill_spans_in_blocks, fix_block_spans, fix_discarded_block
  21. from magic_pdf.pre_proc.ocr_span_list_modify import remove_overlaps_min_spans, get_qa_need_list_v2, \
  22. remove_overlaps_low_confidence_spans
  23. from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap
  24. def remove_horizontal_overlap_block_which_smaller(all_bboxes):
  25. useful_blocks = []
  26. for bbox in all_bboxes:
  27. useful_blocks.append({
  28. "bbox": bbox[:4]
  29. })
  30. is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = check_useful_block_horizontal_overlap(useful_blocks)
  31. if is_useful_block_horz_overlap:
  32. logger.warning(
  33. f"skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}")
  34. for bbox in all_bboxes.copy():
  35. if smaller_bbox == bbox[:4]:
  36. all_bboxes.remove(bbox)
  37. return is_useful_block_horz_overlap, all_bboxes
  38. def __replace_STX_ETX(text_str:str):
  39. """ Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks.
  40. Drawback: This issue is only observed in English text; it has not been found in Chinese text so far.
  41. Args:
  42. text_str (str): raw text
  43. Returns:
  44. _type_: replaced text
  45. """
  46. if text_str:
  47. s = text_str.replace('\u0002', "'")
  48. s = s.replace("\u0003", "'")
  49. return s
  50. return text_str
  51. def txt_spans_extract(pdf_page, inline_equations, interline_equations):
  52. text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
  53. char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
  54. "blocks"
  55. ]
  56. text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
  57. text_blocks = replace_equations_in_textblock(
  58. text_blocks, inline_equations, interline_equations
  59. )
  60. text_blocks = remove_citation_marker(text_blocks)
  61. text_blocks = remove_chars_in_text_blocks(text_blocks)
  62. spans = []
  63. for v in text_blocks:
  64. for line in v["lines"]:
  65. for span in line["spans"]:
  66. bbox = span["bbox"]
  67. if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
  68. continue
  69. if span.get('type') not in (ContentType.InlineEquation, ContentType.InterlineEquation):
  70. spans.append(
  71. {
  72. "bbox": list(span["bbox"]),
  73. "content": __replace_STX_ETX(span["text"]),
  74. "type": ContentType.Text,
  75. "score": 1.0,
  76. }
  77. )
  78. return spans
  79. def replace_text_span(pymu_spans, ocr_spans):
  80. return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans
  81. def model_init(model_name: str, local_path=None):
  82. from transformers import LayoutLMv3ForTokenClassification
  83. if torch.cuda.is_available():
  84. device = torch.device("cuda")
  85. if torch.cuda.is_bf16_supported():
  86. supports_bfloat16 = True
  87. else:
  88. supports_bfloat16 = False
  89. else:
  90. device = torch.device("cpu")
  91. supports_bfloat16 = False
  92. if model_name == "layoutreader":
  93. if local_path:
  94. model = LayoutLMv3ForTokenClassification.from_pretrained(local_path)
  95. else:
  96. model = LayoutLMv3ForTokenClassification.from_pretrained("hantian/layoutreader")
  97. # 检查设备是否支持 bfloat16
  98. if supports_bfloat16:
  99. model.bfloat16()
  100. model.to(device).eval()
  101. else:
  102. logger.error("model name not allow")
  103. exit(1)
  104. return model
  105. class ModelSingleton:
  106. _instance = None
  107. _models = {}
  108. def __new__(cls, *args, **kwargs):
  109. if cls._instance is None:
  110. cls._instance = super().__new__(cls)
  111. return cls._instance
  112. def get_model(self, model_name: str, local_path=None):
  113. if model_name not in self._models:
  114. if local_path:
  115. self._models[model_name] = model_init(model_name=model_name, local_path=local_path)
  116. else:
  117. self._models[model_name] = model_init(model_name=model_name)
  118. return self._models[model_name]
  119. def do_predict(boxes: List[List[int]], model) -> List[int]:
  120. from magic_pdf.model.v3.helpers import prepare_inputs, boxes2inputs, parse_logits
  121. inputs = boxes2inputs(boxes)
  122. inputs = prepare_inputs(inputs, model)
  123. logits = model(**inputs).logits.cpu().squeeze(0)
  124. return parse_logits(logits, len(boxes))
  125. def cal_block_index(fix_blocks, sorted_bboxes):
  126. for block in fix_blocks:
  127. if block['type'] in ['text', 'title', 'interline_equation']:
  128. line_index_list = []
  129. if len(block['lines']) == 0:
  130. block['index'] = sorted_bboxes.index(block['bbox'])
  131. else:
  132. for line in block['lines']:
  133. line['index'] = sorted_bboxes.index(line['bbox'])
  134. line_index_list.append(line['index'])
  135. median_value = statistics.median(line_index_list)
  136. block['index'] = median_value
  137. elif block['type'] in ['table', 'image']:
  138. block['index'] = sorted_bboxes.index(block['bbox'])
  139. return fix_blocks
  140. def sort_lines_by_model(fix_blocks, page_w, page_h):
  141. page_line_list = []
  142. for block in fix_blocks:
  143. if block['type'] in ['text', 'title', 'interline_equation']:
  144. if len(block['lines']) == 0: # 没有line的block(一般是图片形式的文本块),就直接用block的bbox来排序
  145. bbox = block['bbox']
  146. page_line_list.append(bbox)
  147. else:
  148. for line in block['lines']:
  149. bbox = line['bbox']
  150. page_line_list.append(bbox)
  151. elif block['type'] in ['table', 'image']: # 简单的把表和图都当成一个line处理
  152. bbox = block['bbox']
  153. page_line_list.append(bbox)
  154. # 使用layoutreader排序
  155. x_scale = 1000.0 / page_w
  156. y_scale = 1000.0 / page_h
  157. boxes = []
  158. # logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
  159. for left, top, right, bottom in page_line_list:
  160. if left < 0:
  161. logger.warning(
  162. f"left < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}")
  163. left = 0
  164. if right > page_w:
  165. logger.warning(
  166. f"right > page_w, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}")
  167. right = page_w
  168. if top < 0:
  169. logger.warning(
  170. f"top < 0, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}")
  171. top = 0
  172. if bottom > page_h:
  173. logger.warning(
  174. f"bottom > page_h, left: {left}, right: {right}, top: {top}, bottom: {bottom}, page_w: {page_w}, page_h: {page_h}")
  175. bottom = page_h
  176. left = round(left * x_scale)
  177. top = round(top * y_scale)
  178. right = round(right * x_scale)
  179. bottom = round(bottom * y_scale)
  180. assert (
  181. 1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
  182. ), f"Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}"
  183. boxes.append([left, top, right, bottom])
  184. model_manager = ModelSingleton()
  185. model = model_manager.get_model("layoutreader")
  186. with torch.no_grad():
  187. orders = do_predict(boxes, model)
  188. sorted_bboxes = [page_line_list[i] for i in orders]
  189. return sorted_bboxes
  190. def parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode):
  191. need_drop = False
  192. drop_reason = []
  193. '''从magic_model对象中获取后面会用到的区块信息'''
  194. img_blocks = magic_model.get_imgs(page_id)
  195. table_blocks = magic_model.get_tables(page_id)
  196. discarded_blocks = magic_model.get_discarded(page_id)
  197. text_blocks = magic_model.get_text_blocks(page_id)
  198. title_blocks = magic_model.get_title_blocks(page_id)
  199. inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations(page_id)
  200. page_w, page_h = magic_model.get_page_size(page_id)
  201. spans = magic_model.get_all_spans(page_id)
  202. '''根据parse_mode,构造spans'''
  203. if parse_mode == "txt":
  204. """ocr 中文本类的 span 用 pymu spans 替换!"""
  205. pymu_spans = txt_spans_extract(
  206. pdf_docs[page_id], inline_equations, interline_equations
  207. )
  208. spans = replace_text_span(pymu_spans, spans)
  209. elif parse_mode == "ocr":
  210. pass
  211. else:
  212. raise Exception("parse_mode must be txt or ocr")
  213. '''删除重叠spans中置信度较低的那些'''
  214. spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
  215. '''删除重叠spans中较小的那些'''
  216. spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
  217. '''对image和table截图'''
  218. spans = ocr_cut_image_and_table(spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter)
  219. '''将所有区块的bbox整理到一起'''
  220. # interline_equation_blocks参数不够准,后面切换到interline_equations上
  221. interline_equation_blocks = []
  222. if len(interline_equation_blocks) > 0:
  223. all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
  224. img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
  225. interline_equation_blocks, page_w, page_h)
  226. else:
  227. all_bboxes, all_discarded_blocks = ocr_prepare_bboxes_for_layout_split_v2(
  228. img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
  229. interline_equations, page_w, page_h)
  230. '''先处理不需要排版的discarded_blocks'''
  231. discarded_block_with_spans, spans = fill_spans_in_blocks(all_discarded_blocks, spans, 0.4)
  232. fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
  233. '''如果当前页面没有bbox则跳过'''
  234. if len(all_bboxes) == 0:
  235. logger.warning(f"skip this page, not found useful bbox, page_id: {page_id}")
  236. return ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
  237. [], [], interline_equations, fix_discarded_blocks,
  238. need_drop, drop_reason)
  239. '''将span填入blocks中'''
  240. block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.3)
  241. '''对block进行fix操作'''
  242. fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)
  243. '''获取所有line并对line排序'''
  244. sorted_bboxes = sort_lines_by_model(fix_blocks, page_w, page_h)
  245. '''根据line的中位数算block的序列关系'''
  246. fix_blocks = cal_block_index(fix_blocks, sorted_bboxes)
  247. '''重排block'''
  248. sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
  249. '''获取QA需要外置的list'''
  250. images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks)
  251. '''构造pdf_info_dict'''
  252. page_info = ocr_construct_page_component_v2(sorted_blocks, [], page_id, page_w, page_h, [],
  253. images, tables, interline_equations, fix_discarded_blocks,
  254. need_drop, drop_reason)
  255. return page_info
  256. def pdf_parse_union(pdf_bytes,
  257. model_list,
  258. imageWriter,
  259. parse_mode,
  260. start_page_id=0,
  261. end_page_id=None,
  262. debug_mode=False,
  263. ):
  264. pdf_bytes_md5 = compute_md5(pdf_bytes)
  265. pdf_docs = fitz.open("pdf", pdf_bytes)
  266. '''初始化空的pdf_info_dict'''
  267. pdf_info_dict = {}
  268. '''用model_list和docs对象初始化magic_model'''
  269. magic_model = MagicModel(model_list, pdf_docs)
  270. '''根据输入的起始范围解析pdf'''
  271. # end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
  272. end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf_docs) - 1
  273. if end_page_id > len(pdf_docs) - 1:
  274. logger.warning("end_page_id is out of range, use pdf_docs length")
  275. end_page_id = len(pdf_docs) - 1
  276. '''初始化启动时间'''
  277. start_time = time.time()
  278. for page_id, page in enumerate(pdf_docs):
  279. '''debug时输出每页解析的耗时'''
  280. if debug_mode:
  281. time_now = time.time()
  282. logger.info(
  283. f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
  284. )
  285. start_time = time_now
  286. '''解析pdf中的每一页'''
  287. if start_page_id <= page_id <= end_page_id:
  288. page_info = parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode)
  289. else:
  290. page_w = page.rect.width
  291. page_h = page.rect.height
  292. page_info = ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
  293. [], [], [], [],
  294. True, "skip page")
  295. pdf_info_dict[f"page_{page_id}"] = page_info
  296. """分段"""
  297. # para_split(pdf_info_dict, debug_mode=debug_mode)
  298. for page_num, page in pdf_info_dict.items():
  299. page['para_blocks'] = page['preproc_blocks']
  300. """dict转list"""
  301. pdf_info_list = dict_to_list(pdf_info_dict)
  302. new_pdf_info_dict = {
  303. "pdf_info": pdf_info_list,
  304. }
  305. clean_memory()
  306. return new_pdf_info_dict
  307. if __name__ == '__main__':
  308. pass