batch_analyze.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. import time
  2. import cv2
  3. import numpy as np
  4. import torch
  5. from loguru import logger
  6. from PIL import Image
  7. from magic_pdf.config.constants import MODEL_NAME
  8. from magic_pdf.config.exceptions import CUDA_NOT_AVAILABLE
  9. from magic_pdf.data.dataset import Dataset
  10. from magic_pdf.libs.clean_memory import clean_memory
  11. from magic_pdf.libs.config_reader import get_device
  12. from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
  13. from magic_pdf.model.pdf_extract_kit import CustomPEKModel
  14. from magic_pdf.model.sub_modules.model_utils import (
  15. clean_vram, crop_img, get_res_list_from_layout_res)
  16. from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import (
  17. get_adjusted_mfdetrec_res, get_ocr_result_list)
  18. from magic_pdf.operators.models import InferenceResult
  19. YOLO_LAYOUT_BASE_BATCH_SIZE = 4
  20. MFD_BASE_BATCH_SIZE = 1
  21. MFR_BASE_BATCH_SIZE = 16
  22. class BatchAnalyze:
  23. def __init__(self, model: CustomPEKModel, batch_ratio: int):
  24. self.model = model
  25. self.batch_ratio = batch_ratio
  26. def __call__(self, images: list) -> list:
  27. images_layout_res = []
  28. layout_start_time = time.time()
  29. if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
  30. # layoutlmv3
  31. for image in images:
  32. layout_res = self.model.layout_model(image, ignore_catids=[])
  33. images_layout_res.append(layout_res)
  34. elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
  35. # doclayout_yolo
  36. layout_images = []
  37. modified_images = []
  38. for image_index, image in enumerate(images):
  39. pil_img = Image.fromarray(image)
  40. width, height = pil_img.size
  41. if height > width:
  42. input_res = {'poly': [0, 0, width, 0, width, height, 0, height]}
  43. new_image, useful_list = crop_img(
  44. input_res, pil_img, crop_paste_x=width // 2, crop_paste_y=0
  45. )
  46. layout_images.append(new_image)
  47. modified_images.append([image_index, useful_list])
  48. else:
  49. layout_images.append(pil_img)
  50. images_layout_res += self.model.layout_model.batch_predict(
  51. layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
  52. )
  53. for image_index, useful_list in modified_images:
  54. for res in images_layout_res[image_index]:
  55. for i in range(len(res['poly'])):
  56. if i % 2 == 0:
  57. res['poly'][i] = (
  58. res['poly'][i] - useful_list[0] + useful_list[2]
  59. )
  60. else:
  61. res['poly'][i] = (
  62. res['poly'][i] - useful_list[1] + useful_list[3]
  63. )
  64. logger.info(
  65. f'layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}'
  66. )
  67. if self.model.apply_formula:
  68. # 公式检测
  69. mfd_start_time = time.time()
  70. images_mfd_res = self.model.mfd_model.batch_predict(
  71. images, self.batch_ratio * MFD_BASE_BATCH_SIZE
  72. )
  73. logger.info(
  74. f'mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}'
  75. )
  76. # 公式识别
  77. mfr_start_time = time.time()
  78. images_formula_list = self.model.mfr_model.batch_predict(
  79. images_mfd_res,
  80. images,
  81. batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
  82. )
  83. for image_index in range(len(images)):
  84. images_layout_res[image_index] += images_formula_list[image_index]
  85. logger.info(
  86. f'mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {len(images)}'
  87. )
  88. # 清理显存
  89. clean_vram(self.model.device, vram_threshold=8)
  90. ocr_time = 0
  91. ocr_count = 0
  92. table_time = 0
  93. table_count = 0
  94. # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
  95. for index in range(len(images)):
  96. layout_res = images_layout_res[index]
  97. pil_img = Image.fromarray(images[index])
  98. ocr_res_list, table_res_list, single_page_mfdetrec_res = (
  99. get_res_list_from_layout_res(layout_res)
  100. )
  101. # ocr识别
  102. ocr_start = time.time()
  103. # Process each area that requires OCR processing
  104. for res in ocr_res_list:
  105. new_image, useful_list = crop_img(
  106. res, pil_img, crop_paste_x=50, crop_paste_y=50
  107. )
  108. adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
  109. single_page_mfdetrec_res, useful_list
  110. )
  111. # OCR recognition
  112. new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
  113. if self.model.apply_ocr:
  114. ocr_res = self.model.ocr_model.ocr(
  115. new_image, mfd_res=adjusted_mfdetrec_res
  116. )[0]
  117. else:
  118. ocr_res = self.model.ocr_model.ocr(
  119. new_image, mfd_res=adjusted_mfdetrec_res, rec=False
  120. )[0]
  121. # Integration results
  122. if ocr_res:
  123. ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
  124. layout_res.extend(ocr_result_list)
  125. ocr_time += time.time() - ocr_start
  126. ocr_count += len(ocr_res_list)
  127. # 表格识别 table recognition
  128. if self.model.apply_table:
  129. table_start = time.time()
  130. for res in table_res_list:
  131. new_image, _ = crop_img(res, pil_img)
  132. single_table_start_time = time.time()
  133. html_code = None
  134. if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
  135. with torch.no_grad():
  136. table_result = self.model.table_model.predict(
  137. new_image, 'html'
  138. )
  139. if len(table_result) > 0:
  140. html_code = table_result[0]
  141. elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
  142. html_code = self.model.table_model.img2html(new_image)
  143. elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
  144. html_code, table_cell_bboxes, elapse = (
  145. self.model.table_model.predict(new_image)
  146. )
  147. run_time = time.time() - single_table_start_time
  148. if run_time > self.model.table_max_time:
  149. logger.warning(
  150. f'table recognition processing exceeds max time {self.model.table_max_time}s'
  151. )
  152. # 判断是否返回正常
  153. if html_code:
  154. expected_ending = html_code.strip().endswith(
  155. '</html>'
  156. ) or html_code.strip().endswith('</table>')
  157. if expected_ending:
  158. res['html'] = html_code
  159. else:
  160. logger.warning(
  161. 'table recognition processing fails, not found expected HTML table end'
  162. )
  163. else:
  164. logger.warning(
  165. 'table recognition processing fails, not get html return'
  166. )
  167. table_time += time.time() - table_start
  168. table_count += len(table_res_list)
  169. if self.model.apply_ocr:
  170. logger.info(f'ocr time: {round(ocr_time, 2)}, image num: {ocr_count}')
  171. else:
  172. logger.info(f'det time: {round(ocr_time, 2)}, image num: {ocr_count}')
  173. if self.model.apply_table:
  174. logger.info(f'table time: {round(table_time, 2)}, image num: {table_count}')
  175. return images_layout_res
  176. def doc_batch_analyze(
  177. dataset: Dataset,
  178. ocr: bool = False,
  179. show_log: bool = False,
  180. start_page_id=0,
  181. end_page_id=None,
  182. lang=None,
  183. layout_model=None,
  184. formula_enable=None,
  185. table_enable=None,
  186. batch_ratio: int | None = None,
  187. ) -> InferenceResult:
  188. """Perform batch analysis on a document dataset.
  189. Args:
  190. dataset (Dataset): The dataset containing document pages to be analyzed.
  191. ocr (bool, optional): Flag to enable OCR (Optical Character Recognition). Defaults to False.
  192. show_log (bool, optional): Flag to enable logging. Defaults to False.
  193. start_page_id (int, optional): The starting page ID for analysis. Defaults to 0.
  194. end_page_id (int, optional): The ending page ID for analysis. Defaults to None, which means analyze till the last page.
  195. lang (str, optional): Language for OCR. Defaults to None.
  196. layout_model (optional): Layout model to be used for analysis. Defaults to None.
  197. formula_enable (optional): Flag to enable formula detection. Defaults to None.
  198. table_enable (optional): Flag to enable table detection. Defaults to None.
  199. batch_ratio (int | None, optional): Ratio for batch processing. Defaults to None, which sets it to 1.
  200. Raises:
  201. CUDA_NOT_AVAILABLE: If CUDA is not available, raises an exception as batch analysis is not supported in CPU mode.
  202. Returns:
  203. InferenceResult: The result of the batch analysis containing the analyzed data and the dataset.
  204. """
  205. if not torch.cuda.is_available():
  206. raise CUDA_NOT_AVAILABLE('batch analyze not support in CPU mode')
  207. lang = None if lang == '' else lang
  208. # TODO: auto detect batch size
  209. batch_ratio = 1 if batch_ratio is None else batch_ratio
  210. end_page_id = end_page_id if end_page_id else len(dataset)
  211. model_manager = ModelSingleton()
  212. custom_model: CustomPEKModel = model_manager.get_model(
  213. ocr, show_log, lang, layout_model, formula_enable, table_enable
  214. )
  215. batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)
  216. model_json = []
  217. # batch analyze
  218. images = []
  219. for index in range(len(dataset)):
  220. if start_page_id <= index <= end_page_id:
  221. page_data = dataset.get_page(index)
  222. img_dict = page_data.get_image()
  223. images.append(img_dict['img'])
  224. analyze_result = batch_model(images)
  225. for index in range(len(dataset)):
  226. page_data = dataset.get_page(index)
  227. img_dict = page_data.get_image()
  228. page_width = img_dict['width']
  229. page_height = img_dict['height']
  230. if start_page_id <= index <= end_page_id:
  231. result = analyze_result.pop(0)
  232. else:
  233. result = []
  234. page_info = {'page_no': index, 'height': page_height, 'width': page_width}
  235. page_dict = {'layout_dets': result, 'page_info': page_info}
  236. model_json.append(page_dict)
  237. # TODO: clean memory when gpu memory is not enough
  238. clean_memory_start_time = time.time()
  239. clean_memory(get_device())
  240. logger.info(f'clean memory time: {round(time.time() - clean_memory_start_time, 2)}')
  241. return InferenceResult(model_json, dataset)