rapid_table.py 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. import cv2
  2. import numpy as np
  3. import torch
  4. from loguru import logger
  5. from rapid_table import RapidTable
  6. class RapidTableModel(object):
  7. def __init__(self, ocr_engine):
  8. self.table_model = RapidTable()
  9. if ocr_engine is None:
  10. self.ocr_model_name = "RapidOCR"
  11. if torch.cuda.is_available():
  12. from rapidocr_paddle import RapidOCR
  13. self.ocr_engine = RapidOCR(det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True)
  14. else:
  15. from rapidocr_onnxruntime import RapidOCR
  16. self.ocr_engine = RapidOCR()
  17. else:
  18. self.ocr_model_name = "PaddleOCR"
  19. self.ocr_engine = ocr_engine
  20. def predict(self, image):
  21. if self.ocr_model_name == "RapidOCR":
  22. ocr_result, _ = self.ocr_engine(np.asarray(image))
  23. elif self.ocr_model_name == "PaddleOCR":
  24. bgr_image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
  25. ocr_result = self.ocr_engine.ocr(bgr_image)[0]
  26. ocr_result = [[item[0], item[1][0], item[1][1]] for item in ocr_result if
  27. len(item) == 2 and isinstance(item[1], tuple)]
  28. else:
  29. logger.error("OCR model not supported")
  30. ocr_result = None
  31. if ocr_result:
  32. html_code, table_cell_bboxes, elapse = self.table_model(np.asarray(image), ocr_result)
  33. return html_code, table_cell_bboxes, elapse
  34. else:
  35. return None, None, None