doc_analyze_by_custom_model.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import fitz
  2. import numpy as np
  3. from loguru import logger
  4. from magic_pdf.model.model_list import MODEL
  5. import magic_pdf.model as model_config
  6. def dict_compare(d1, d2):
  7. return d1.items() == d2.items()
  8. def remove_duplicates_dicts(lst):
  9. unique_dicts = []
  10. for dict_item in lst:
  11. if not any(
  12. dict_compare(dict_item, existing_dict) for existing_dict in unique_dicts
  13. ):
  14. unique_dicts.append(dict_item)
  15. return unique_dicts
  16. def load_images_from_pdf(pdf_bytes: bytes, dpi=200) -> list:
  17. try:
  18. import cv2
  19. from PIL import Image
  20. except ImportError:
  21. logger.error("opencv-python and Pillow are not installed, please install by pip.")
  22. images = []
  23. with fitz.open("pdf", pdf_bytes) as doc:
  24. for index in range(0, doc.page_count):
  25. page = doc[index]
  26. mat = fitz.Matrix(dpi / 72, dpi / 72)
  27. pm = page.get_pixmap(matrix=mat, alpha=False)
  28. # if width or height > 2000 pixels, don't enlarge the image
  29. # if pm.width > 2000 or pm.height > 2000:
  30. # pm = page.get_pixmap(matrix=fitz.Matrix(1, 1), alpha=False)
  31. img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
  32. img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
  33. img_dict = {"img": img, "width": pm.width, "height": pm.height}
  34. images.append(img_dict)
  35. return images
  36. def doc_analyze(pdf_bytes: bytes, ocr: bool = False, show_log: bool = False, model=MODEL.Paddle):
  37. if model_config.__use_inside_model__:
  38. from magic_pdf.model.pp_structure_v2 import CustomPaddleModel
  39. else:
  40. logger.error("use_inside_model is False, not allow to use inside model")
  41. exit(1)
  42. images = load_images_from_pdf(pdf_bytes)
  43. custom_model = None
  44. if model == MODEL.Paddle:
  45. custom_model = CustomPaddleModel(ocr=ocr, show_log=show_log)
  46. else:
  47. pass
  48. model_json = []
  49. for index, img_dict in enumerate(images):
  50. img = img_dict["img"]
  51. page_width = img_dict["width"]
  52. page_height = img_dict["height"]
  53. result = custom_model(img)
  54. page_info = {"page_no": index, "height": page_height, "width": page_width}
  55. page_dict = {"layout_dets": result, "page_info": page_info}
  56. model_json.append(page_dict)
  57. return model_json