magic_model.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import _is_in, bbox_relative_pos, bbox_distance
  12. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  13. class MagicModel:
  14. """
  15. 每个函数没有得到元素的时候返回空list
  16. """
  17. def __fix_axis(self):
  18. need_remove_list = []
  19. for model_page_info in self.__model_list:
  20. page_no = model_page_info["page_info"]["page_no"]
  21. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  22. model_page_info, self.__docs[page_no]
  23. )
  24. layout_dets = model_page_info["layout_dets"]
  25. for layout_det in layout_dets:
  26. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  27. bbox = [
  28. int(x0 / horizontal_scale_ratio),
  29. int(y0 / vertical_scale_ratio),
  30. int(x1 / horizontal_scale_ratio),
  31. int(y1 / vertical_scale_ratio),
  32. ]
  33. layout_det["bbox"] = bbox
  34. # 删除高度或者宽度为0的spans
  35. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  36. need_remove_list.append(layout_det)
  37. for need_remove in need_remove_list:
  38. layout_dets.remove(need_remove)
  39. def __init__(self, model_list: list, docs: fitz.Document):
  40. self.__model_list = model_list
  41. self.__docs = docs
  42. self.__fix_axis()
  43. #@todo 移除置信度小于0.6的所有block
  44. def __reduct_overlap(self, bboxes):
  45. N = len(bboxes)
  46. keep = [True] * N
  47. for i in range(N):
  48. for j in range(N):
  49. if i == j:
  50. continue
  51. if _is_in(bboxes[i], bboxes[j]):
  52. keep[i] = False
  53. return [bboxes[i] for i in range(N) if keep[i]]
  54. def __tie_up_category_by_distance(
  55. self, page_no, subject_category_id, object_category_id
  56. ):
  57. """
  58. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  59. """
  60. ret = []
  61. MAX_DIS_OF_POINT = 10**9 + 7
  62. subjects = self.__reduct_overlap(
  63. list(
  64. map(
  65. lambda x: x["bbox"],
  66. filter(
  67. lambda x: x["category_id"] == subject_category_id,
  68. self.__model_list[page_no]["layout_dets"],
  69. ),
  70. )
  71. )
  72. )
  73. objects = self.__reduct_overlap(
  74. list(
  75. map(
  76. lambda x: x["bbox"],
  77. filter(
  78. lambda x: x["category_id"] == object_category_id,
  79. self.__model_list[page_no]["layout_dets"],
  80. ),
  81. )
  82. )
  83. )
  84. subject_object_relation_map = {}
  85. subjects.sort(key=lambda x: x[0] ** 2 + x[1] ** 2) # get the distance !
  86. all_bboxes = []
  87. for v in subjects:
  88. all_bboxes.append({"category_id": subject_category_id, "bbox": v})
  89. for v in objects:
  90. all_bboxes.append({"category_id": object_category_id, "bbox": v})
  91. N = len(all_bboxes)
  92. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  93. for i in range(N):
  94. for j in range(i):
  95. if (
  96. all_bboxes[i]["category_id"] == subject_category_id
  97. and all_bboxes[j]["category_id"] == subject_category_id
  98. ):
  99. continue
  100. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  101. dis[j][i] = dis[i][j]
  102. used = set()
  103. for i in range(N):
  104. # 求第 i 个 subject 所关联的 object
  105. if all_bboxes[i]["category_id"] != subject_category_id:
  106. continue
  107. seen = set()
  108. candidates = []
  109. arr = []
  110. for j in range(N):
  111. pos_flag_count = sum(
  112. list(
  113. map(
  114. lambda x: 1 if x else 0,
  115. bbox_relative_pos(
  116. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  117. ),
  118. )
  119. )
  120. )
  121. if pos_flag_count > 1:
  122. continue
  123. if (
  124. all_bboxes[j]["category_id"] != object_category_id
  125. or j in used
  126. or dis[i][j] == MAX_DIS_OF_POINT
  127. ):
  128. continue
  129. arr.append((dis[i][j], j))
  130. arr.sort(key=lambda x: x[0])
  131. if len(arr) > 0:
  132. candidates.append(arr[0][1])
  133. seen.add(arr[0][1])
  134. # 已经获取初始种子
  135. for j in set(candidates):
  136. tmp = []
  137. for k in range(i + 1, N):
  138. pos_flag_count = sum(
  139. list(
  140. map(
  141. lambda x: 1 if x else 0,
  142. bbox_relative_pos(
  143. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  144. ),
  145. )
  146. )
  147. )
  148. if pos_flag_count > 1:
  149. continue
  150. if (
  151. all_bboxes[k]["category_id"] != object_category_id
  152. or k in used
  153. or k in seen
  154. or dis[j][k] == MAX_DIS_OF_POINT
  155. ):
  156. continue
  157. is_nearest = True
  158. for l in range(i + 1, N):
  159. if l in (j, k) or l in used or l in seen:
  160. continue
  161. if not float_gt(dis[l][k], dis[j][k]):
  162. is_nearest = False
  163. break
  164. if is_nearest:
  165. tmp.append(k)
  166. seen.add(k)
  167. candidates = tmp
  168. if len(candidates) == 0:
  169. break
  170. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  171. # 先扩一下 bbox,
  172. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  173. all_bboxes[i]["bbox"][0]
  174. ]
  175. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  176. all_bboxes[i]["bbox"][1]
  177. ]
  178. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  179. all_bboxes[i]["bbox"][2]
  180. ]
  181. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  182. all_bboxes[i]["bbox"][3]
  183. ]
  184. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  185. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  186. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  187. caption_poses = [
  188. [ox0, oy0, ix0, oy1],
  189. [ox0, oy0, ox1, iy0],
  190. [ox0, iy1, ox1, oy1],
  191. [ix1, oy0, ox1, oy1],
  192. ]
  193. caption_areas = []
  194. for bbox in caption_poses:
  195. embed_arr = []
  196. for idx in seen:
  197. if _is_in(all_bboxes[idx]["bbox"], bbox):
  198. embed_arr.append(idx)
  199. if len(embed_arr) > 0:
  200. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  201. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  202. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  203. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  204. caption_areas.append(
  205. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  206. )
  207. else:
  208. caption_areas.append(0)
  209. subject_object_relation_map[i] = []
  210. if max(caption_areas) > 0:
  211. max_area_idx = caption_areas.index(max(caption_areas))
  212. caption_bbox = caption_poses[max_area_idx]
  213. for j in seen:
  214. if _is_in(all_bboxes[j]["bbox"], caption_bbox):
  215. used.add(j)
  216. subject_object_relation_map[i].append(j)
  217. for i in sorted(subject_object_relation_map.keys()):
  218. result = {
  219. "subject_body": all_bboxes[i]["bbox"],
  220. "all": all_bboxes[i]["bbox"],
  221. }
  222. if len(subject_object_relation_map[i]) > 0:
  223. x0 = min(
  224. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  225. )
  226. y0 = min(
  227. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  228. )
  229. x1 = max(
  230. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  231. )
  232. y1 = max(
  233. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  234. )
  235. result["object_body"] = [x0, y0, x1, y1]
  236. result["all"] = [
  237. min(x0, all_bboxes[i]["bbox"][0]),
  238. min(y0, all_bboxes[i]["bbox"][1]),
  239. max(x1, all_bboxes[i]["bbox"][2]),
  240. max(y1, all_bboxes[i]["bbox"][3]),
  241. ]
  242. ret.append(result)
  243. total_subject_object_dis = 0
  244. # 计算已经配对的 distance 距离
  245. for i in subject_object_relation_map.keys():
  246. for j in subject_object_relation_map[i]:
  247. total_subject_object_dis += bbox_distance(
  248. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  249. )
  250. # 计算未匹配的 subject 和 object 的距离(非精确版)
  251. with_caption_subject = set(
  252. [
  253. key
  254. for key in subject_object_relation_map.keys()
  255. if len(subject_object_relation_map[i]) > 0
  256. ]
  257. )
  258. for i in range(N):
  259. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  260. continue
  261. candidates = []
  262. for j in range(N):
  263. if (
  264. all_bboxes[j]["category_id"] != subject_category_id
  265. or j in with_caption_subject
  266. ):
  267. continue
  268. candidates.append((dis[i][j], j))
  269. if len(candidates) > 0:
  270. candidates.sort(key=lambda x: x[0])
  271. total_subject_object_dis += candidates[0][1]
  272. with_caption_subject.add(j)
  273. return ret, total_subject_object_dis
  274. def get_imgs(self, page_no: int): # @许瑞
  275. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  276. return [
  277. {
  278. "bbox": record["all"],
  279. "img_body_bbox": record["subject_body"],
  280. "img_caption_bbox": record.get("object_body", None),
  281. }
  282. for record in records
  283. ]
  284. def get_tables(
  285. self, page_no: int
  286. ) -> list: # 3个坐标, caption, table主体,table-note
  287. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  288. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  289. ret = []
  290. N, M = len(with_captions), len(with_footnotes)
  291. assert N == M
  292. for i in range(N):
  293. record = {
  294. "table_caption_bbox": with_captions[i].get("object_body", None),
  295. "table_body_bbox": with_captions[i]["subject_body"],
  296. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  297. }
  298. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  299. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  300. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  301. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  302. record["bbox"] = [x0, y0, x1, y1]
  303. ret.append(record)
  304. return ret
  305. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  306. inline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"])
  307. interline_equations = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"])
  308. interline_equations_blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no)
  309. return inline_equations, interline_equations, interline_equations_blocks
  310. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  311. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  312. return blocks
  313. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  314. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  315. return blocks
  316. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  317. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  318. return blocks
  319. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  320. text_spans = []
  321. model_page_info = self.__model_list[page_no]
  322. layout_dets = model_page_info["layout_dets"]
  323. for layout_det in layout_dets:
  324. if layout_det["category_id"] == "15":
  325. span = {
  326. "bbox": layout_det['bbox'],
  327. "content": layout_det["text"],
  328. }
  329. text_spans.append(span)
  330. return text_spans
  331. def get_all_spans(self, page_no: int) -> list:
  332. all_spans = []
  333. model_page_info = self.__model_list[page_no]
  334. layout_dets = model_page_info["layout_dets"]
  335. allow_category_id_list = [3, 5, 13, 14, 15]
  336. """当成span拼接的"""
  337. # 3: 'image', # 图片
  338. # 5: 'table', # 表格
  339. # 13: 'inline_equation', # 行内公式
  340. # 14: 'interline_equation', # 行间公式
  341. # 15: 'text', # ocr识别文本
  342. for layout_det in layout_dets:
  343. category_id = layout_det["category_id"]
  344. if category_id in allow_category_id_list:
  345. span = {
  346. "bbox": layout_det['bbox']
  347. }
  348. if category_id == 3:
  349. span["type"] = ContentType.Image
  350. elif category_id == 5:
  351. span["type"] = ContentType.Table
  352. elif category_id == 13:
  353. span["content"] = layout_det["latex"]
  354. span["type"] = ContentType.InlineEquation
  355. elif category_id == 14:
  356. span["content"] = layout_det["latex"]
  357. span["type"] = ContentType.InterlineEquation
  358. elif category_id == 15:
  359. span["content"] = layout_det["text"]
  360. span["type"] = ContentType.Text
  361. all_spans.append(span)
  362. return all_spans
  363. def get_page_size(self, page_no: int): # 获取页面宽高
  364. # 获取当前页的page对象
  365. page = self.__docs[page_no]
  366. # 获取当前页的宽高
  367. page_w = page.rect.width
  368. page_h = page.rect.height
  369. return page_w, page_h
  370. def __get_blocks_by_type(self, type: int, page_no: int, extra_col: list[str] = []) -> list:
  371. blocks = []
  372. for page_dict in self.__model_list:
  373. layout_dets = page_dict.get("layout_dets", [])
  374. page_info = page_dict.get("page_info", {})
  375. page_number = page_info.get("page_no", -1)
  376. if page_no != page_number:
  377. continue
  378. for item in layout_dets:
  379. category_id = item.get("category_id", -1)
  380. bbox = item.get("bbox", None)
  381. if category_id == type:
  382. block = {
  383. "bbox": bbox
  384. }
  385. for col in extra_col:
  386. block[col] = item.get(col, None)
  387. blocks.append(block)
  388. return blocks
  389. if __name__ == "__main__":
  390. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  391. if 0:
  392. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  393. model_file_path = r"linshixuqiu\19983-00_new.json"
  394. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  395. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  396. model_list = json.loads(model_json_txt)
  397. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  398. img_bucket_path = "imgs"
  399. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  400. pdf_docs = fitz.open("pdf", pdf_bytes)
  401. magic_model = MagicModel(model_list, pdf_docs)
  402. if 1:
  403. model_list = json.loads(
  404. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  405. )
  406. pdf_bytes = drw.read(
  407. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  408. )
  409. pdf_docs = fitz.open("pdf", pdf_bytes)
  410. magic_model = MagicModel(model_list, pdf_docs)
  411. for i in range(7):
  412. print(magic_model.get_imgs(i))