| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 |
- import json
- import pandas as pd
- import numpy as np
- from nltk.translate.bleu_score import sentence_bleu
- import argparse
- from sklearn.metrics import classification_report
- from collections import Counter
- from sklearn import metrics
- from pandas import isnull
- def indicator_cal(json_standard,json_test):
- json_standard = pd.DataFrame(json_standard)
- json_test = pd.DataFrame(json_test)
- '''数据集总体指标'''
-
- a=json_test[['id','mid_json']]
- b=json_standard[['id','mid_json','pass_label']]
- a=a.drop_duplicates(subset='id',keep='first')
- a.index=range(len(a))
- b=b.drop_duplicates(subset='id',keep='first')
- b.index=range(len(b))
- outer_merge=pd.merge(a,b,on='id',how='outer')
- outer_merge.columns=['id','standard_mid_json','test_mid_json','pass_label']
- standard_exist=outer_merge.standard_mid_json.apply(lambda x: not isnull(x))
- test_exist=outer_merge.test_mid_json.apply(lambda x: not isnull(x))
- overall_report = {}
- overall_report['accuracy']=metrics.accuracy_score(standard_exist,test_exist)
- overall_report['precision']=metrics.precision_score(standard_exist,test_exist)
- overall_report['recall']=metrics.recall_score(standard_exist,test_exist)
- overall_report['f1_score']=metrics.f1_score(standard_exist,test_exist)
- inner_merge=pd.merge(a,b,on='id',how='inner')
- inner_merge.columns=['id','standard_mid_json','test_mid_json','pass_label']
- json_standard = inner_merge['standard_mid_json']#check一下是否对齐
- json_test = inner_merge['test_mid_json']
-
- '''批量读取中间生成的json文件'''
- test_inline_equations=[]
- test_interline_equations=[]
- test_inline_euqations_bboxs=[]
- test_interline_equations_bboxs=[]
- test_dropped_text_bboxes=[]
- test_dropped_text_tag=[]
- test_dropped_image_bboxes=[]
- test_dropped_table_bboxes=[]
- test_preproc_num=[]#阅读顺序
- test_para_num=[]
- test_para_text=[]
- for i in json_test:
- mid_json=pd.DataFrame(i)
- mid_json=mid_json.iloc[:,:-1]
- for j1 in mid_json.loc['inline_equations',:]:
- page_in_text=[]
- page_in_bbox=[]
- for k1 in j1:
- page_in_text.append(k1['latex_text'])
- page_in_bbox.append(k1['bbox'])
- test_inline_equations.append(page_in_text)
- test_inline_euqations_bboxs.append(page_in_bbox)
- for j2 in mid_json.loc['interline_equations',:]:
- page_in_text=[]
- page_in_bbox=[]
- for k2 in j2:
- page_in_text.append(k2['latex_text'])
- page_in_bbox.append(k2['bbox'])
- test_interline_equations.append(page_in_text)
- test_interline_equations_bboxs.append(page_in_bbox)
- for j3 in mid_json.loc['droped_text_block',:]:
- page_in_bbox=[]
- page_in_tag=[]
- for k3 in j3:
- page_in_bbox.append(k3['bbox'])
- #如果k3中存在tag这个key
- if 'tag' in k3.keys():
- page_in_tag.append(k3['tag'])
- else:
- page_in_tag.append('None')
- test_dropped_text_tag.append(page_in_tag)
- test_dropped_text_bboxes.append(page_in_bbox)
- for j4 in mid_json.loc['droped_image_block',:]:
- test_dropped_image_bboxes.append(j4)
- for j5 in mid_json.loc['droped_table_block',:]:
- test_dropped_table_bboxes.append(j5)
- for j6 in mid_json.loc['preproc_blocks',:]:
- page_in=[]
- for k6 in j6:
- page_in.append(k6['number'])
- test_preproc_num.append(page_in)
- test_pdf_text=[]
- for j7 in mid_json.loc['para_blocks',:]:
- test_para_num.append(len(j7))
- for k7 in j7:
- test_pdf_text.append(k7['text'])
- test_para_text.append(test_pdf_text)
- standard_inline_equations=[]
- standard_interline_equations=[]
- standard_inline_euqations_bboxs=[]
- standard_interline_equations_bboxs=[]
- standard_dropped_text_bboxes=[]
- standard_dropped_text_tag=[]
- standard_dropped_image_bboxes=[]
- standard_dropped_table_bboxes=[]
- standard_preproc_num=[]#阅读顺序
- standard_para_num=[]
- standard_para_text=[]
- for i in json_standard:
- mid_json=pd.DataFrame(i)
- mid_json=mid_json.iloc[:,:-1]
- for j1 in mid_json.loc['inline_equations',:]:
- page_in_text=[]
- page_in_bbox=[]
- for k1 in j1:
- page_in_text.append(k1['latex_text'])
- page_in_bbox.append(k1['bbox'])
- standard_inline_equations.append(page_in_text)
- standard_inline_euqations_bboxs.append(page_in_bbox)
- for j2 in mid_json.loc['interline_equations',:]:
- page_in_text=[]
- page_in_bbox=[]
- for k2 in j2:
- page_in_text.append(k2['latex_text'])
- page_in_bbox.append(k2['bbox'])
- standard_interline_equations.append(page_in_text)
- standard_interline_equations_bboxs.append(page_in_bbox)
- for j3 in mid_json.loc['droped_text_block',:]:
- page_in_bbox=[]
- page_in_tag=[]
- for k3 in j3:
- page_in_bbox.append(k3['bbox'])
- if 'tag' in k3.keys():
- page_in_tag.append(k3['tag'])
- else:
- page_in_tag.append('None')
- standard_dropped_text_bboxes.append(page_in_bbox)
- standard_dropped_text_tag.append(page_in_tag)
- for j4 in mid_json.loc['droped_image_block',:]:
- standard_dropped_image_bboxes.append(j4)
- for j5 in mid_json.loc['droped_table_block',:]:
- standard_dropped_table_bboxes.append(j5)
- for j6 in mid_json.loc['preproc_blocks',:]:
- page_in=[]
- for k6 in j6:
- page_in.append(k6['number'])
- standard_preproc_num.append(page_in)
- standard_pdf_text=[]
- for j7 in mid_json.loc['para_blocks',:]:
- standard_para_num.append(len(j7))
- for k7 in j7:
- standard_pdf_text.append(k7['text'])
- standard_para_text.append(standard_pdf_text)
- """
- 在计算指标之前最好先确认基本统计信息是否一致
- """
- '''
- 计算pdf之间的总体编辑距离和bleu
- 这里只计算正例的pdf
- '''
-
- test_para_text=np.asarray(test_para_text, dtype = object)[inner_merge['pass_label']=='yes']
- standard_para_text=np.asarray(standard_para_text, dtype = object)[inner_merge['pass_label']=='yes']
- pdf_dis=[]
- pdf_bleu=[]
- for a,b in zip(test_para_text,standard_para_text):
- a1=[ ''.join(i) for i in a]
- b1=[ ''.join(i) for i in b]
- pdf_dis.append(Levenshtein_Distance(a1,b1))
- pdf_bleu.append(sentence_bleu([a1],b1))
- overall_report['pdf间的平均编辑距离']=np.mean(pdf_dis)
- overall_report['pdf间的平均bleu']=np.mean(pdf_bleu)
- '''行内公式和行间公式的编辑距离和bleu'''
- inline_equations_edit_bleu=equations_indicator(test_inline_euqations_bboxs,standard_inline_euqations_bboxs,test_inline_equations,standard_inline_equations)
- interline_equations_edit_bleu=equations_indicator(test_interline_equations_bboxs,standard_interline_equations_bboxs,test_interline_equations,standard_interline_equations)
-
- '''行内公式bbox匹配相关指标'''
- inline_equations_bbox_report=bbox_match_indicator(test_inline_euqations_bboxs,standard_inline_euqations_bboxs)
- '''行间公式bbox匹配相关指标'''
- interline_equations_bbox_report=bbox_match_indicator(test_interline_equations_bboxs,standard_interline_equations_bboxs)
- '''可以先检查page和bbox数量是否一致'''
- '''dropped_text_block的bbox匹配相关指标'''
- test_text_bbox=[]
- standard_text_bbox=[]
- test_tag=[]
- standard_tag=[]
- index=0
- for a,b in zip(test_dropped_text_bboxes,standard_dropped_text_bboxes):
- test_page_tag=[]
- standard_page_tag=[]
- test_page_bbox=[]
- standard_page_bbox=[]
- if len(a)==0 and len(b)==0:
- pass
- else:
- for i in range(len(b)):
- judge=0
- standard_page_tag.append(standard_dropped_text_tag[index][i])
- standard_page_bbox.append(1)
- for j in range(len(a)):
- if bbox_offset(b[i],a[j]):
- judge=1
- test_page_tag.append(test_dropped_text_tag[index][j])
- test_page_bbox.append(1)
- break
- if judge==0:
- test_page_tag.append('None')
- test_page_bbox.append(0)
- if len(test_dropped_text_tag[index])+test_page_tag.count('None')>len(standard_dropped_text_tag[index]):#有多删的情况出现
- test_page_tag1=test_page_tag.copy()
- if 'None' in test_page_tag:
- test_page_tag1=test_page_tag1.remove('None')
- else:
- test_page_tag1=test_page_tag
- diff=list((Counter(test_dropped_text_tag[index]) - Counter(test_page_tag1)).elements())
-
- test_page_tag.extend(diff)
- standard_page_tag.extend(['None']*len(diff))
- test_page_bbox.extend([1]*len(diff))
- standard_page_bbox.extend([0]*len(diff))
- test_tag.extend(test_page_tag)
- standard_tag.extend(standard_page_tag)
- test_text_bbox.extend(test_page_bbox)
- standard_text_bbox.extend(standard_page_bbox)
- index+=1
-
- text_block_report = {}
- text_block_report['accuracy']=metrics.accuracy_score(standard_text_bbox,test_text_bbox)
- text_block_report['precision']=metrics.precision_score(standard_text_bbox,test_text_bbox)
- text_block_report['recall']=metrics.recall_score(standard_text_bbox,test_text_bbox)
- text_block_report['f1_score']=metrics.f1_score(standard_text_bbox,test_text_bbox)
- '''删除的text_block的tag的准确率,召回率和f1-score'''
- text_block_tag_report = classification_report(y_true=standard_tag , y_pred=test_tag,output_dict=True)
- del text_block_tag_report['None']
- del text_block_tag_report["macro avg"]
- del text_block_tag_report["weighted avg"]
- '''dropped_image_block的bbox匹配相关指标'''
- '''有数据格式不一致的问题'''
- image_block_report=bbox_match_indicator(test_dropped_image_bboxes,standard_dropped_image_bboxes)
-
-
- '''dropped_table_block的bbox匹配相关指标'''
- table_block_report=bbox_match_indicator(test_dropped_table_bboxes,standard_dropped_table_bboxes)
-
-
- '''阅读顺序编辑距离的均值'''
- preproc_num_dis=[]
- for a,b in zip(test_preproc_num,standard_preproc_num):
- preproc_num_dis.append(Levenshtein_Distance(a,b))
- preproc_num_edit=np.mean(preproc_num_dis)
- '''分段准确率'''
- test_para_num=np.array(test_para_num)
- standard_para_num=np.array(standard_para_num)
- acc_para=np.mean(test_para_num==standard_para_num)
-
- output=pd.DataFrame()
- output['总体指标']=[overall_report]
- output['行内公式平均编辑距离']=[inline_equations_edit_bleu[0]]
- output['行内公式平均bleu']=[inline_equations_edit_bleu[1]]
- output['行间公式平均编辑距离']=[interline_equations_edit_bleu[0]]
- output['行间公式平均bleu']=[interline_equations_edit_bleu[1]]
- output['行内公式识别相关指标']=[inline_equations_bbox_report]
- output['行间公式识别相关指标']=[interline_equations_bbox_report]
- output['阅读顺序平均编辑距离']=[preproc_num_edit]
- output['分段准确率']=[acc_para]
- output['删除的text block的相关指标']=[text_block_report]
- output['删除的image block的相关指标']=[image_block_report]
- output['删除的table block的相关指标']=[table_block_report]
- output['删除的text block的tag相关指标']=[text_block_tag_report]
-
- return output
- """
- 计算编辑距离
- """
- def Levenshtein_Distance(str1, str2):
- matrix = [[ i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]
- for i in range(1, len(str1)+1):
- for j in range(1, len(str2)+1):
- if(str1[i-1] == str2[j-1]):
- d = 0
- else:
- d = 1
- matrix[i][j] = min(matrix[i-1][j]+1, matrix[i][j-1]+1, matrix[i-1][j-1]+d)
- return matrix[len(str1)][len(str2)]
- '''
- 计算bbox偏移量是否符合标准的函数
- '''
- def bbox_offset(b_t,b_s):
- '''b_t是test_doc里的bbox,b_s是standard_doc里的bbox'''
- x1_t,y1_t,x2_t,y2_t=b_t
- x1_s,y1_s,x2_s,y2_s=b_s
- x1=max(x1_t,x1_s)
- x2=min(x2_t,x2_s)
- y1=max(y1_t,y1_s)
- y2=min(y2_t,y2_s)
- area_overlap=(x2-x1)*(y2-y1)
- area_t=(x2_t-x1_t)*(y2_t-y1_t)+(x2_s-x1_s)*(y2_s-y1_s)-area_overlap
- if area_t-area_overlap==0 or area_overlap/(area_t-area_overlap)>0.95:
- return True
- else:
- return False
-
- '''bbox匹配和对齐函数,输出相关指标'''
- '''输入的是以page为单位的bbox列表'''
- def bbox_match_indicator(test_bbox_list,standard_bbox_list):
-
- test_bbox=[]
- standard_bbox=[]
- for a,b in zip(test_bbox_list,standard_bbox_list):
- test_page_bbox=[]
- standard_page_bbox=[]
- if len(a)==0 and len(b)==0:
- pass
- else:
- for i in b:
- if len(i)!=4:
- continue
- else:
- judge=0
- standard_page_bbox.append(1)
- for j in a:
- if bbox_offset(i,j):
- judge=1
- test_page_bbox.append(1)
- break
- if judge==0:
- test_page_bbox.append(0)
-
- diff_num=len(a)+test_page_bbox.count(0)-len(b)
- if diff_num>0:#有多删的情况出现
- test_page_bbox.extend([1]*diff_num)
- standard_page_bbox.extend([0]*diff_num)
-
- test_bbox.extend(test_page_bbox)
- standard_bbox.extend(standard_page_bbox)
-
- block_report = {}
- block_report['accuracy']=metrics.accuracy_score(standard_bbox,test_bbox)
- block_report['precision']=metrics.precision_score(standard_bbox,test_bbox)
- block_report['recall']=metrics.recall_score(standard_bbox,test_bbox)
- block_report['f1_score']=metrics.f1_score(standard_bbox,test_bbox)
- return block_report
- '''公式编辑距离和bleu'''
- def equations_indicator(test_euqations_bboxs,standard_euqations_bboxs,test_equations,standard_equations):
- test_match_equations=[]
- standard_match_equations=[]
- index=0
- for a,b in zip(test_euqations_bboxs,standard_euqations_bboxs):
- if len(a)==0 and len(b)==0:
- pass
- else:
- for i in range(len(b)):
- for j in range(len(a)):
- if bbox_offset(b[i],a[j]):
- standard_match_equations.append(standard_equations[index][i])
- test_match_equations.append(test_equations[index][j])
- break
- index+=1
-
- dis=[]
- bleu=[]
- for a,b in zip(test_match_equations,standard_match_equations):
- if len(a)==0 and len(b)==0:
- continue
- else:
- if a==b:
- dis.append(0)
- bleu.append(1)
- else:
- dis.append(Levenshtein_Distance(a,b))
- bleu.append(sentence_bleu([a],b))
- equations_edit=np.mean(dis)
- equations_bleu=np.mean(bleu)
- return (equations_edit,equations_bleu)
-
- parser = argparse.ArgumentParser()
- parser.add_argument('--test', type=str)
- parser.add_argument('--standard', type=str)
- args = parser.parse_args()
- pdf_json_test = args.test
- pdf_json_standard = args.standard
- if __name__ == '__main__':
-
- pdf_json_test = [json.loads(line)
- for line in open(pdf_json_test, 'r', encoding='utf-8')]
- pdf_json_standard = [json.loads(line)
- for line in open(pdf_json_standard, 'r', encoding='utf-8')]
-
- overall_indicator=indicator_cal(pdf_json_standard,pdf_json_test)
- '''计算的指标输出到overall_indicator_output.json中'''
- overall_indicator.to_json('overall_indicator_output.json',orient='records',lines=True,force_ascii=False)
-
|