| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076 |
- import enum
- import json
- from magic_pdf.config.model_block_type import ModelBlockTypeEnum
- from magic_pdf.config.ocr_content_type import CategoryId, ContentType
- from magic_pdf.data.data_reader_writer import (FileBasedDataReader,
- FileBasedDataWriter)
- from magic_pdf.data.dataset import Dataset
- from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
- bbox_relative_pos, box_area, calculate_iou,
- calculate_overlap_area_in_bbox1_area_ratio,
- get_overlap_area)
- from magic_pdf.libs.commons import fitz, join_path
- from magic_pdf.libs.coordinate_transform import get_scale_ratio
- from magic_pdf.libs.local_math import float_gt
- from magic_pdf.pre_proc.remove_bbox_overlap import _remove_overlap_between_bbox
- CAPATION_OVERLAP_AREA_RATIO = 0.6
- MERGE_BOX_OVERLAP_AREA_RATIO = 1.1
- class PosRelationEnum(enum.Enum):
- LEFT = 'left'
- RIGHT = 'right'
- UP = 'up'
- BOTTOM = 'bottom'
- ALL = 'all'
- class MagicModel:
- """每个函数没有得到元素的时候返回空list."""
- def __fix_axis(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- page_no = model_page_info['page_info']['page_no']
- horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
- model_page_info, self.__docs.get_page(page_no)
- )
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det.get('bbox') is not None:
- # 兼容直接输出bbox的模型数据,如paddle
- x0, y0, x1, y1 = layout_det['bbox']
- else:
- # 兼容直接输出poly的模型数据,如xxx
- x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
- bbox = [
- int(x0 / horizontal_scale_ratio),
- int(y0 / vertical_scale_ratio),
- int(x1 / horizontal_scale_ratio),
- int(y1 / vertical_scale_ratio),
- ]
- layout_det['bbox'] = bbox
- # 删除高度或者宽度小于等于0的spans
- if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
- need_remove_list.append(layout_det)
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['score'] <= 0.05:
- need_remove_list.append(layout_det)
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_high_iou_and_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info['layout_dets']
- for layout_det1 in layout_dets:
- for layout_det2 in layout_dets:
- if layout_det1 == layout_det2:
- continue
- if layout_det1['category_id'] in [
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- 9,
- ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
- if (
- calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
- > 0.9
- ):
- if layout_det1['score'] < layout_det2['score']:
- layout_det_need_remove = layout_det1
- else:
- layout_det_need_remove = layout_det2
- if layout_det_need_remove not in need_remove_list:
- need_remove_list.append(layout_det_need_remove)
- else:
- continue
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __init__(self, model_list: list, docs: Dataset):
- self.__model_list = model_list
- self.__docs = docs
- """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
- self.__fix_axis()
- """删除置信度特别低的模型数据(<0.05),提高质量"""
- self.__fix_by_remove_low_confidence()
- """删除高iou(>0.9)数据中置信度较低的那个"""
- self.__fix_by_remove_high_iou_and_low_confidence()
- self.__fix_footnote()
- def _bbox_distance(self, bbox1, bbox2):
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
- flags = [left, right, bottom, top]
- count = sum([1 if v else 0 for v in flags])
- if count > 1:
- return float('inf')
- if left or right:
- l1 = bbox1[3] - bbox1[1]
- l2 = bbox2[3] - bbox2[1]
- else:
- l1 = bbox1[2] - bbox1[0]
- l2 = bbox2[2] - bbox2[0]
- if l2 > l1 and (l2 - l1) / l1 > 0.3:
- return float('inf')
- return bbox_distance(bbox1, bbox2)
- def __fix_footnote(self):
- # 3: figure, 5: table, 7: footnote
- for model_page_info in self.__model_list:
- footnotes = []
- figures = []
- tables = []
- for obj in model_page_info['layout_dets']:
- if obj['category_id'] == 7:
- footnotes.append(obj)
- elif obj['category_id'] == 3:
- figures.append(obj)
- elif obj['category_id'] == 5:
- tables.append(obj)
- if len(footnotes) * len(figures) == 0:
- continue
- dis_figure_footnote = {}
- dis_table_footnote = {}
- for i in range(len(footnotes)):
- for j in range(len(figures)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], figures[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_figure_footnote[i] = min(
- self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
- dis_figure_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- for j in range(len(tables)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], tables[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_table_footnote[i] = min(
- self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
- dis_table_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- if i not in dis_figure_footnote:
- continue
- if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
- footnotes[i]['category_id'] = CategoryId.ImageFootnote
- def __reduct_overlap(self, bboxes):
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def __tie_up_category_by_distance(
- self, page_no, subject_category_id, object_category_id
- ):
- """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
- 只能属于一个 subject."""
- ret = []
- MAX_DIS_OF_POINT = 10**9 + 7
- """
- subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
- 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
- 再求出筛选出的 subjects 和 object 的最短距离
- """
- def search_overlap_between_boxes(subject_idx, object_idx):
- idxes = [subject_idx, object_idx]
- x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
- y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
- x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
- y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
- merged_bbox = [
- min(x0s),
- min(y0s),
- max(x1s),
- max(y1s),
- ]
- ratio = 0
- other_objects = list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id']
- not in (object_category_id, subject_category_id),
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- for other_object in other_objects:
- ratio = max(
- ratio,
- get_overlap_area(merged_bbox, other_object['bbox'])
- * 1.0
- / box_area(all_bboxes[object_idx]['bbox']),
- )
- if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
- break
- return ratio
- def may_find_other_nearest_bbox(subject_idx, object_idx):
- ret = float('inf')
- x0 = min(
- all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
- )
- y0 = min(
- all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
- )
- x1 = max(
- all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
- )
- y1 = max(
- all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
- )
- object_area = abs(
- all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
- ) * abs(
- all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
- )
- for i in range(len(all_bboxes)):
- if (
- i == subject_idx
- or all_bboxes[i]['category_id'] != subject_category_id
- ):
- continue
- if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
- all_bboxes[i]['bbox'], [x0, y0, x1, y1]
- ):
- i_area = abs(
- all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
- ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
- if i_area >= object_area:
- ret = min(float('inf'), dis[i][object_idx])
- return ret
- def expand_bbbox(idxes):
- x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
- y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
- x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
- y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
- return min(x0s), min(y0s), max(x1s), max(y1s)
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == subject_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == object_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- subject_object_relation_map = {}
- subjects.sort(
- key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
- ) # get the distance !
- all_bboxes = []
- for v in subjects:
- all_bboxes.append(
- {
- 'category_id': subject_category_id,
- 'bbox': v['bbox'],
- 'score': v['score'],
- }
- )
- for v in objects:
- all_bboxes.append(
- {
- 'category_id': object_category_id,
- 'bbox': v['bbox'],
- 'score': v['score'],
- }
- )
- N = len(all_bboxes)
- dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
- for i in range(N):
- for j in range(i):
- if (
- all_bboxes[i]['category_id'] == subject_category_id
- and all_bboxes[j]['category_id'] == subject_category_id
- ):
- continue
- subject_idx, object_idx = i, j
- if all_bboxes[j]['category_id'] == subject_category_id:
- subject_idx, object_idx = j, i
- if (
- search_overlap_between_boxes(subject_idx, object_idx)
- >= MERGE_BOX_OVERLAP_AREA_RATIO
- ):
- dis[i][j] = float('inf')
- dis[j][i] = dis[i][j]
- continue
- dis[i][j] = self._bbox_distance(
- all_bboxes[subject_idx]['bbox'], all_bboxes[object_idx]['bbox']
- )
- dis[j][i] = dis[i][j]
- used = set()
- for i in range(N):
- # 求第 i 个 subject 所关联的 object
- if all_bboxes[i]['category_id'] != subject_category_id:
- continue
- seen = set()
- candidates = []
- arr = []
- for j in range(N):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- if (
- all_bboxes[j]['category_id'] != object_category_id
- or j in used
- or dis[i][j] == MAX_DIS_OF_POINT
- ):
- continue
- left, right, _, _ = bbox_relative_pos(
- all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
- ) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
- if left or right:
- one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
- else:
- one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
- if dis[i][j] > one_way_dis:
- continue
- arr.append((dis[i][j], j))
- arr.sort(key=lambda x: x[0])
- if len(arr) > 0:
- """
- bug: 离该subject 最近的 object 可能跨越了其它的 subject。
- 比如 [this subect] [some sbuject] [the nearest object of subject]
- """
- if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
- candidates.append(arr[0][1])
- seen.add(arr[0][1])
- # 已经获取初始种子
- for j in set(candidates):
- tmp = []
- for k in range(i + 1, N):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- if (
- all_bboxes[k]['category_id'] != object_category_id
- or k in used
- or k in seen
- or dis[j][k] == MAX_DIS_OF_POINT
- or dis[j][k] > dis[i][j]
- ):
- continue
- is_nearest = True
- for ni in range(i + 1, N):
- if ni in (j, k) or ni in used or ni in seen:
- continue
- if not float_gt(dis[ni][k], dis[j][k]):
- is_nearest = False
- break
- if is_nearest:
- nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
- n_dis = bbox_distance(
- all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
- )
- if float_gt(dis[i][j], n_dis):
- continue
- tmp.append(k)
- seen.add(k)
- candidates = tmp
- if len(candidates) == 0:
- break
- # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
- # 先扩一下 bbox,
- ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
- ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
- # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
- caption_poses = [
- [ox0, oy0, ix0, oy1],
- [ox0, oy0, ox1, iy0],
- [ox0, iy1, ox1, oy1],
- [ix1, oy0, ox1, oy1],
- ]
- caption_areas = []
- for bbox in caption_poses:
- embed_arr = []
- for idx in seen:
- if (
- calculate_overlap_area_in_bbox1_area_ratio(
- all_bboxes[idx]['bbox'], bbox
- )
- > CAPATION_OVERLAP_AREA_RATIO
- ):
- embed_arr.append(idx)
- if len(embed_arr) > 0:
- embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
- embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
- embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
- embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
- caption_areas.append(
- int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
- )
- else:
- caption_areas.append(0)
- subject_object_relation_map[i] = []
- if max(caption_areas) > 0:
- max_area_idx = caption_areas.index(max(caption_areas))
- caption_bbox = caption_poses[max_area_idx]
- for j in seen:
- if (
- calculate_overlap_area_in_bbox1_area_ratio(
- all_bboxes[j]['bbox'], caption_bbox
- )
- > CAPATION_OVERLAP_AREA_RATIO
- ):
- used.add(j)
- subject_object_relation_map[i].append(j)
- for i in sorted(subject_object_relation_map.keys()):
- result = {
- 'subject_body': all_bboxes[i]['bbox'],
- 'all': all_bboxes[i]['bbox'],
- 'score': all_bboxes[i]['score'],
- }
- if len(subject_object_relation_map[i]) > 0:
- x0 = min(
- [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
- )
- y0 = min(
- [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
- )
- x1 = max(
- [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
- )
- y1 = max(
- [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
- )
- result['object_body'] = [x0, y0, x1, y1]
- result['all'] = [
- min(x0, all_bboxes[i]['bbox'][0]),
- min(y0, all_bboxes[i]['bbox'][1]),
- max(x1, all_bboxes[i]['bbox'][2]),
- max(y1, all_bboxes[i]['bbox'][3]),
- ]
- ret.append(result)
- total_subject_object_dis = 0
- # 计算已经配对的 distance 距离
- for i in subject_object_relation_map.keys():
- for j in subject_object_relation_map[i]:
- total_subject_object_dis += bbox_distance(
- all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
- )
- # 计算未匹配的 subject 和 object 的距离(非精确版)
- with_caption_subject = set(
- [
- key
- for key in subject_object_relation_map.keys()
- if len(subject_object_relation_map[i]) > 0
- ]
- )
- for i in range(N):
- if all_bboxes[i]['category_id'] != object_category_id or i in used:
- continue
- candidates = []
- for j in range(N):
- if (
- all_bboxes[j]['category_id'] != subject_category_id
- or j in with_caption_subject
- ):
- continue
- candidates.append((dis[i][j], j))
- if len(candidates) > 0:
- candidates.sort(key=lambda x: x[0])
- total_subject_object_dis += candidates[0][1]
- with_caption_subject.add(j)
- return ret, total_subject_object_dis
- def __tie_up_category_by_distance_v2(
- self,
- page_no: int,
- subject_category_id: int,
- object_category_id: int,
- priority_pos: PosRelationEnum,
- ):
- """_summary_
- Args:
- page_no (int): _description_
- subject_category_id (int): _description_
- object_category_id (int): _description_
- priority_pos (PosRelationEnum): _description_
- Returns:
- _type_: _description_
- """
- AXIS_MULPLICITY = 0.5
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == subject_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == object_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- M = len(objects)
- subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- sub_obj_map_h = {i: [] for i in range(len(subjects))}
- dis_by_directions = {
- 'top': [[-1, float('inf')]] * M,
- 'bottom': [[-1, float('inf')]] * M,
- 'left': [[-1, float('inf')]] * M,
- 'right': [[-1, float('inf')]] * M,
- }
- for i, obj in enumerate(objects):
- l_x_axis, l_y_axis = (
- obj['bbox'][2] - obj['bbox'][0],
- obj['bbox'][3] - obj['bbox'][1],
- )
- axis_unit = min(l_x_axis, l_y_axis)
- for j, sub in enumerate(subjects):
- bbox1, bbox2, _ = _remove_overlap_between_bbox(
- objects[i]['bbox'], subjects[j]['bbox']
- )
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
- flags = [left, right, bottom, top]
- if sum([1 if v else 0 for v in flags]) > 1:
- continue
- if left:
- if dis_by_directions['left'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['left'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if right:
- if dis_by_directions['right'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['right'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if bottom:
- if dis_by_directions['bottom'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['bottom'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if top:
- if dis_by_directions['top'][i][1] > bbox_distance(
- obj['bbox'], sub['bbox']
- ):
- dis_by_directions['top'][i] = [
- j,
- bbox_distance(obj['bbox'], sub['bbox']),
- ]
- if (
- dis_by_directions['top'][i][1] != float('inf')
- and dis_by_directions['bottom'][i][1] != float('inf')
- and priority_pos in (PosRelationEnum.BOTTOM, PosRelationEnum.UP)
- ):
- RATIO = 3
- if (
- abs(
- dis_by_directions['top'][i][1]
- - dis_by_directions['bottom'][i][1]
- )
- < RATIO * axis_unit
- ):
- if priority_pos == PosRelationEnum.BOTTOM:
- sub_obj_map_h[dis_by_directions['bottom'][i][0]].append(i)
- else:
- sub_obj_map_h[dis_by_directions['top'][i][0]].append(i)
- continue
- if dis_by_directions['left'][i][1] != float('inf') or dis_by_directions[
- 'right'
- ][i][1] != float('inf'):
- if dis_by_directions['left'][i][1] != float(
- 'inf'
- ) and dis_by_directions['right'][i][1] != float('inf'):
- if AXIS_MULPLICITY * axis_unit >= abs(
- dis_by_directions['left'][i][1]
- - dis_by_directions['right'][i][1]
- ):
- left_sub_bbox = subjects[dis_by_directions['left'][i][0]][
- 'bbox'
- ]
- right_sub_bbox = subjects[dis_by_directions['right'][i][0]][
- 'bbox'
- ]
- left_sub_bbox_y_axis = left_sub_bbox[3] - left_sub_bbox[1]
- right_sub_bbox_y_axis = right_sub_bbox[3] - right_sub_bbox[1]
- if (
- abs(left_sub_bbox_y_axis - l_y_axis)
- + dis_by_directions['left'][i][0]
- > abs(right_sub_bbox_y_axis - l_y_axis)
- + dis_by_directions['right'][i][0]
- ):
- left_or_right = dis_by_directions['right'][i]
- else:
- left_or_right = dis_by_directions['left'][i]
- else:
- left_or_right = dis_by_directions['left'][i]
- if left_or_right[1] > dis_by_directions['right'][i][1]:
- left_or_right = dis_by_directions['right'][i]
- else:
- left_or_right = dis_by_directions['left'][i]
- if left_or_right[1] == float('inf'):
- left_or_right = dis_by_directions['right'][i]
- else:
- left_or_right = [-1, float('inf')]
- if dis_by_directions['top'][i][1] != float('inf') or dis_by_directions[
- 'bottom'
- ][i][1] != float('inf'):
- if dis_by_directions['top'][i][1] != float('inf') and dis_by_directions[
- 'bottom'
- ][i][1] != float('inf'):
- if AXIS_MULPLICITY * axis_unit >= abs(
- dis_by_directions['top'][i][1]
- - dis_by_directions['bottom'][i][1]
- ):
- top_bottom = subjects[dis_by_directions['bottom'][i][0]]['bbox']
- bottom_top = subjects[dis_by_directions['top'][i][0]]['bbox']
- top_bottom_x_axis = top_bottom[2] - top_bottom[0]
- bottom_top_x_axis = bottom_top[2] - bottom_top[0]
- if (
- abs(top_bottom_x_axis - l_x_axis)
- + dis_by_directions['bottom'][i][1]
- > abs(bottom_top_x_axis - l_x_axis)
- + dis_by_directions['top'][i][1]
- ):
- top_or_bottom = dis_by_directions['top'][i]
- else:
- top_or_bottom = dis_by_directions['bottom'][i]
- else:
- top_or_bottom = dis_by_directions['top'][i]
- if top_or_bottom[1] > dis_by_directions['bottom'][i][1]:
- top_or_bottom = dis_by_directions['bottom'][i]
- else:
- top_or_bottom = dis_by_directions['top'][i]
- if top_or_bottom[1] == float('inf'):
- top_or_bottom = dis_by_directions['bottom'][i]
- else:
- top_or_bottom = [-1, float('inf')]
- if left_or_right[1] != float('inf') or top_or_bottom[1] != float('inf'):
- if left_or_right[1] != float('inf') and top_or_bottom[1] != float(
- 'inf'
- ):
- if AXIS_MULPLICITY * axis_unit >= abs(
- left_or_right[1] - top_or_bottom[1]
- ):
- y_axis_bbox = subjects[left_or_right[0]]['bbox']
- x_axis_bbox = subjects[top_or_bottom[0]]['bbox']
- if (
- abs((x_axis_bbox[2] - x_axis_bbox[0]) - l_x_axis) / l_x_axis
- > abs((y_axis_bbox[3] - y_axis_bbox[1]) - l_y_axis)
- / l_y_axis
- ):
- sub_obj_map_h[left_or_right[0]].append(i)
- else:
- sub_obj_map_h[top_or_bottom[0]].append(i)
- else:
- if left_or_right[1] > top_or_bottom[1]:
- sub_obj_map_h[top_or_bottom[0]].append(i)
- else:
- sub_obj_map_h[left_or_right[0]].append(i)
- else:
- if left_or_right[1] != float('inf'):
- sub_obj_map_h[left_or_right[0]].append(i)
- else:
- sub_obj_map_h[top_or_bottom[0]].append(i)
- ret = []
- for i in sub_obj_map_h.keys():
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[i]['bbox'],
- 'score': subjects[i]['score'],
- },
- 'obj_bboxes': [
- {'score': objects[j]['score'], 'bbox': objects[j]['bbox']}
- for j in sub_obj_map_h[i]
- ],
- 'sub_idx': i,
- }
- )
- return ret
- def get_imgs_v2(self, page_no: int):
- with_captions = self.__tie_up_category_by_distance_v2(
- page_no, 3, 4, PosRelationEnum.BOTTOM
- )
- with_footnotes = self.__tie_up_category_by_distance_v2(
- page_no, 3, CategoryId.ImageFootnote, PosRelationEnum.ALL
- )
- ret = []
- for v in with_captions:
- record = {
- 'image_body': v['sub_bbox'],
- 'image_caption_list': v['obj_bboxes'],
- }
- filter_idx = v['sub_idx']
- d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
- record['image_footnote_list'] = d['obj_bboxes']
- ret.append(record)
- return ret
- def get_tables_v2(self, page_no: int) -> list:
- with_captions = self.__tie_up_category_by_distance_v2(
- page_no, 5, 6, PosRelationEnum.UP
- )
- with_footnotes = self.__tie_up_category_by_distance_v2(
- page_no, 5, 7, PosRelationEnum.ALL
- )
- ret = []
- for v in with_captions:
- record = {
- 'table_body': v['sub_bbox'],
- 'table_caption_list': v['obj_bboxes'],
- }
- filter_idx = v['sub_idx']
- d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
- record['table_footnote_list'] = d['obj_bboxes']
- ret.append(record)
- return ret
- def get_imgs(self, page_no: int):
- with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
- with_footnotes, _ = self.__tie_up_category_by_distance(
- page_no, 3, CategoryId.ImageFootnote
- )
- ret = []
- N, M = len(with_captions), len(with_footnotes)
- assert N == M
- for i in range(N):
- record = {
- 'score': with_captions[i]['score'],
- 'img_caption_bbox': with_captions[i].get('object_body', None),
- 'img_body_bbox': with_captions[i]['subject_body'],
- 'img_footnote_bbox': with_footnotes[i].get('object_body', None),
- }
- x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
- y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
- x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
- y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
- record['bbox'] = [x0, y0, x1, y1]
- ret.append(record)
- return ret
- def get_tables(
- self, page_no: int
- ) -> list: # 3个坐标, caption, table主体,table-note
- with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
- with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
- ret = []
- N, M = len(with_captions), len(with_footnotes)
- assert N == M
- for i in range(N):
- record = {
- 'score': with_captions[i]['score'],
- 'table_caption_bbox': with_captions[i].get('object_body', None),
- 'table_body_bbox': with_captions[i]['subject_body'],
- 'table_footnote_bbox': with_footnotes[i].get('object_body', None),
- }
- x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
- y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
- x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
- y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
- record['bbox'] = [x0, y0, x1, y1]
- ret.append(record)
- return ret
- def get_equations(self, page_no: int) -> list: # 有坐标,也有字
- inline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
- )
- interline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
- )
- interline_equations_blocks = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
- )
- return inline_equations, interline_equations, interline_equations_blocks
- def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
- return blocks
- def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
- return blocks
- def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
- return blocks
- def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
- text_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['category_id'] == '15':
- span = {
- 'bbox': layout_det['bbox'],
- 'content': layout_det['text'],
- }
- text_spans.append(span)
- return text_spans
- def get_all_spans(self, page_no: int) -> list:
- def remove_duplicate_spans(spans):
- new_spans = []
- for span in spans:
- if not any(span == existing_span for existing_span in new_spans):
- new_spans.append(span)
- return new_spans
- all_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info['layout_dets']
- allow_category_id_list = [3, 5, 13, 14, 15]
- """当成span拼接的"""
- # 3: 'image', # 图片
- # 5: 'table', # 表格
- # 13: 'inline_equation', # 行内公式
- # 14: 'interline_equation', # 行间公式
- # 15: 'text', # ocr识别文本
- for layout_det in layout_dets:
- category_id = layout_det['category_id']
- if category_id in allow_category_id_list:
- span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
- if category_id == 3:
- span['type'] = ContentType.Image
- elif category_id == 5:
- # 获取table模型结果
- latex = layout_det.get('latex', None)
- html = layout_det.get('html', None)
- if latex:
- span['latex'] = latex
- elif html:
- span['html'] = html
- span['type'] = ContentType.Table
- elif category_id == 13:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.InlineEquation
- elif category_id == 14:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.InterlineEquation
- elif category_id == 15:
- span['content'] = layout_det['text']
- span['type'] = ContentType.Text
- all_spans.append(span)
- return remove_duplicate_spans(all_spans)
- def get_page_size(self, page_no: int): # 获取页面宽高
- # 获取当前页的page对象
- page = self.__docs.get_page(page_no).get_page_info()
- # 获取当前页的宽高
- page_w = page.w
- page_h = page.h
- return page_w, page_h
- def __get_blocks_by_type(
- self, type: int, page_no: int, extra_col: list[str] = []
- ) -> list:
- blocks = []
- for page_dict in self.__model_list:
- layout_dets = page_dict.get('layout_dets', [])
- page_info = page_dict.get('page_info', {})
- page_number = page_info.get('page_no', -1)
- if page_no != page_number:
- continue
- for item in layout_dets:
- category_id = item.get('category_id', -1)
- bbox = item.get('bbox', None)
- if category_id == type:
- block = {
- 'bbox': bbox,
- 'score': item.get('score'),
- }
- for col in extra_col:
- block[col] = item.get(col, None)
- blocks.append(block)
- return blocks
- def get_model_list(self, page_no):
- return self.__model_list[page_no]
- if __name__ == '__main__':
- drw = FileBasedDataReader(r'D:/project/20231108code-clean')
- if 0:
- pdf_file_path = r'linshixuqiu\19983-00.pdf'
- model_file_path = r'linshixuqiu\19983-00_new.json'
- pdf_bytes = drw.read(pdf_file_path)
- model_json_txt = drw.read(model_file_path).decode()
- model_list = json.loads(model_json_txt)
- write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
- img_bucket_path = 'imgs'
- img_writer = FileBasedDataWriter(join_path(write_path, img_bucket_path))
- pdf_docs = fitz.open('pdf', pdf_bytes)
- magic_model = MagicModel(model_list, pdf_docs)
- if 1:
- from magic_pdf.data.dataset import PymuDocDataset
- model_list = json.loads(
- drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json')
- )
- pdf_bytes = drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf')
- magic_model = MagicModel(model_list, PymuDocDataset(pdf_bytes))
- for i in range(7):
- print(magic_model.get_imgs(i))
|