| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- import math
- import cv2
- import numpy as np
- from scipy.spatial import distance as dist
- from skimage import measure
- def get_table_line(binimg, axis=0, lineW=10):
- ##获取表格线
- ##axis=0 横线
- ##axis=1 竖线
- labels = measure.label(binimg > 0, connectivity=2) # 8连通区域标记
- regions = measure.regionprops(labels)
- if axis == 1:
- lineboxes = [
- min_area_rect(line.coords)
- for line in regions
- if line.bbox[2] - line.bbox[0] > lineW
- ]
- else:
- lineboxes = [
- min_area_rect(line.coords)
- for line in regions
- if line.bbox[3] - line.bbox[1] > lineW
- ]
- return lineboxes
- def min_area_rect(coords):
- """
- 多边形外接矩形
- """
- rect = cv2.minAreaRect(coords[:, ::-1])
- box = cv2.boxPoints(rect)
- box = box.reshape((8,)).tolist()
- box = image_location_sort_box(box)
- x1, y1, x2, y2, x3, y3, x4, y4 = box
- w, h = calculate_center_rotate_angle(box)
- if w < h:
- xmin = (x1 + x2) / 2
- xmax = (x3 + x4) / 2
- ymin = (y1 + y2) / 2
- ymax = (y3 + y4) / 2
- else:
- xmin = (x1 + x4) / 2
- xmax = (x2 + x3) / 2
- ymin = (y1 + y4) / 2
- ymax = (y2 + y3) / 2
- return [xmin, ymin, xmax, ymax]
- def image_location_sort_box(box):
- x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
- pts = (x1, y1), (x2, y2), (x3, y3), (x4, y4)
- pts = np.array(pts, dtype="float32")
- (x1, y1), (x2, y2), (x3, y3), (x4, y4) = _order_points(pts)
- return [x1, y1, x2, y2, x3, y3, x4, y4]
- def calculate_center_rotate_angle(box):
- x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
- w = (
- np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
- + np.sqrt((x3 - x4) ** 2 + (y3 - y4) ** 2)
- ) / 2
- h = (
- np.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2)
- + np.sqrt((x1 - x4) ** 2 + (y1 - y4) ** 2)
- ) / 2
- return w, h
- def _order_points(pts):
- # 根据x坐标对点进行排序
- """
- ---------------------
- 本项目中是为了排序后得到[(xmin,ymin),(xmax,ymin),(xmax,ymax),(xmin,ymax)]
- 作者:Tong_T
- 来源:CSDN
- 原文:https://blog.csdn.net/Tong_T/article/details/81907132
- 版权声明:本文为博主原创文章,转载请附上博文链接!
- """
- x_sorted = pts[np.argsort(pts[:, 0]), :]
- left_most = x_sorted[:2, :]
- right_most = x_sorted[2:, :]
- left_most = left_most[np.argsort(left_most[:, 1]), :]
- (tl, bl) = left_most
- distance = dist.cdist(tl[np.newaxis], right_most, "euclidean")[0]
- (br, tr) = right_most[np.argsort(distance)[::-1], :]
- return np.array([tl, tr, br, bl], dtype="float32")
- def sqrt(p1, p2):
- return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
- def adjust_lines(lines, alph=50, angle=50):
- lines_n = len(lines)
- new_lines = []
- for i in range(lines_n):
- x1, y1, x2, y2 = lines[i]
- cx1, cy1 = (x1 + x2) / 2, (y1 + y2) / 2
- for j in range(lines_n):
- if i != j:
- x3, y3, x4, y4 = lines[j]
- cx2, cy2 = (x3 + x4) / 2, (y3 + y4) / 2
- if (x3 < cx1 < x4 or y3 < cy1 < y4) or (
- x1 < cx2 < x2 or y1 < cy2 < y2
- ): # 判断两个横线在y方向的投影重不重合
- continue
- else:
- r = sqrt((x1, y1), (x3, y3))
- k = abs((y3 - y1) / (x3 - x1 + 1e-10))
- a = math.atan(k) * 180 / math.pi
- if r < alph and a < angle:
- new_lines.append((x1, y1, x3, y3))
- r = sqrt((x1, y1), (x4, y4))
- k = abs((y4 - y1) / (x4 - x1 + 1e-10))
- a = math.atan(k) * 180 / math.pi
- if r < alph and a < angle:
- new_lines.append((x1, y1, x4, y4))
- r = sqrt((x2, y2), (x3, y3))
- k = abs((y3 - y2) / (x3 - x2 + 1e-10))
- a = math.atan(k) * 180 / math.pi
- if r < alph and a < angle:
- new_lines.append((x2, y2, x3, y3))
- r = sqrt((x2, y2), (x4, y4))
- k = abs((y4 - y2) / (x4 - x2 + 1e-10))
- a = math.atan(k) * 180 / math.pi
- if r < alph and a < angle:
- new_lines.append((x2, y2, x4, y4))
- return new_lines
- def final_adjust_lines(rowboxes, colboxes):
- nrow = len(rowboxes)
- ncol = len(colboxes)
- for i in range(nrow):
- for j in range(ncol):
- rowboxes[i] = line_to_line(rowboxes[i], colboxes[j], alpha=20, angle=30)
- colboxes[j] = line_to_line(colboxes[j], rowboxes[i], alpha=20, angle=30)
- return rowboxes, colboxes
- def draw_lines(im, bboxes, color=(0, 0, 0), lineW=3):
- """
- boxes: bounding boxes
- """
- tmp = np.copy(im)
- c = color
- h, w = im.shape[:2]
- for box in bboxes:
- x1, y1, x2, y2 = box[:4]
- cv2.line(
- tmp, (int(x1), int(y1)), (int(x2), int(y2)), c, lineW, lineType=cv2.LINE_AA
- )
- return tmp
- def line_to_line(points1, points2, alpha=10, angle=30):
- """
- 线段之间的距离
- """
- x1, y1, x2, y2 = points1
- ox1, oy1, ox2, oy2 = points2
- xy = np.array([(x1, y1), (x2, y2)], dtype="float32")
- A1, B1, C1 = fit_line(xy)
- oxy = np.array([(ox1, oy1), (ox2, oy2)], dtype="float32")
- A2, B2, C2 = fit_line(oxy)
- flag1 = point_line_cor(np.array([x1, y1], dtype="float32"), A2, B2, C2)
- flag2 = point_line_cor(np.array([x2, y2], dtype="float32"), A2, B2, C2)
- if (flag1 > 0 and flag2 > 0) or (flag1 < 0 and flag2 < 0): # 横线或者竖线在竖线或者横线的同一侧
- if (A1 * B2 - A2 * B1) != 0:
- x = (B1 * C2 - B2 * C1) / (A1 * B2 - A2 * B1)
- y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1)
- # x, y = round(x, 2), round(y, 2)
- p = (x, y) # 横线与竖线的交点
- r0 = sqrt(p, (x1, y1))
- r1 = sqrt(p, (x2, y2))
- if min(r0, r1) < alpha: # 若交点与线起点或者终点的距离小于alpha,则延长线到交点
- if r0 < r1:
- k = abs((y2 - p[1]) / (x2 - p[0] + 1e-10))
- a = math.atan(k) * 180 / math.pi
- if a < angle or abs(90 - a) < angle:
- points1 = np.array([p[0], p[1], x2, y2], dtype="float32")
- else:
- k = abs((y1 - p[1]) / (x1 - p[0] + 1e-10))
- a = math.atan(k) * 180 / math.pi
- if a < angle or abs(90 - a) < angle:
- points1 = np.array([x1, y1, p[0], p[1]], dtype="float32")
- return points1
- def min_area_rect_box(
- regions, flag=True, W=0, H=0, filtersmall=False, adjust_box=False
- ):
- """
- 多边形外接矩形
- """
- boxes = []
- for region in regions:
- if region.bbox_area > H * W * 3 / 4: # 过滤大的单元格
- continue
- rect = cv2.minAreaRect(region.coords[:, ::-1])
- box = cv2.boxPoints(rect)
- box = box.reshape((8,)).tolist()
- box = image_location_sort_box(box)
- x1, y1, x2, y2, x3, y3, x4, y4 = box
- w, h = calculate_center_rotate_angle(box)
- if w * h < 0.5 * W * H:
- if filtersmall and (
- w < 15 or h < 15
- ): # or w / h > 30 or h / w > 30): # 过滤小的单元格
- continue
- boxes.append([x1, y1, x2, y2, x3, y3, x4, y4])
- return boxes
- def point_line_cor(p, A, B, C):
- ##判断点与线之间的位置关系
- # 一般式直线方程(Ax+By+c)=0
- x, y = p
- r = A * x + B * y + C
- return r
- def fit_line(p):
- """A = Y2 - Y1
- B = X1 - X2
- C = X2*Y1 - X1*Y2
- AX+BY+C=0
- 直线一般方程
- """
- x1, y1 = p[0]
- x2, y2 = p[1]
- A = y2 - y1
- B = x1 - x2
- C = x2 * y1 - x1 * y2
- return A, B, C
|