pipeline_magic_model.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in, get_minbox_if_overlap_by_ratio
  2. from mineru.utils.enum_class import CategoryId, ContentType
  3. class MagicModel:
  4. """每个函数没有得到元素的时候返回空list."""
  5. def __init__(self, page_model_info: dict, scale: float):
  6. self.__page_model_info = page_model_info
  7. self.__scale = scale
  8. """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
  9. self.__fix_axis()
  10. """删除置信度特别低的模型数据(<0.05),提高质量"""
  11. self.__fix_by_remove_low_confidence()
  12. """删除高iou(>0.9)数据中置信度较低的那个"""
  13. self.__fix_by_remove_high_iou_and_low_confidence()
  14. """将部分tbale_footnote修正为image_footnote"""
  15. self.__fix_footnote()
  16. """处理重叠的image_body和table_body"""
  17. self.__fix_by_remove_overlap_image_table_body()
  18. def __fix_by_remove_overlap_image_table_body(self):
  19. need_remove_list = []
  20. layout_dets = self.__page_model_info['layout_dets']
  21. image_blocks = list(filter(
  22. lambda x: x['category_id'] == CategoryId.ImageBody, layout_dets
  23. ))
  24. table_blocks = list(filter(
  25. lambda x: x['category_id'] == CategoryId.TableBody, layout_dets
  26. ))
  27. def add_need_remove_block(blocks):
  28. for i in range(len(blocks)):
  29. for j in range(i + 1, len(blocks)):
  30. block1 = blocks[i]
  31. block2 = blocks[j]
  32. overlap_box = get_minbox_if_overlap_by_ratio(
  33. block1['bbox'], block2['bbox'], 0.8
  34. )
  35. if overlap_box is not None:
  36. block_to_remove = next(
  37. (block for block in blocks if block['bbox'] == overlap_box),
  38. None,
  39. )
  40. if (
  41. block_to_remove is not None
  42. and block_to_remove not in need_remove_list
  43. ):
  44. large_block = block1 if block1 != block_to_remove else block2
  45. x1, y1, x2, y2 = large_block['bbox']
  46. sx1, sy1, sx2, sy2 = block_to_remove['bbox']
  47. x1 = min(x1, sx1)
  48. y1 = min(y1, sy1)
  49. x2 = max(x2, sx2)
  50. y2 = max(y2, sy2)
  51. large_block['bbox'] = [x1, y1, x2, y2]
  52. need_remove_list.append(block_to_remove)
  53. add_need_remove_block(image_blocks)
  54. add_need_remove_block(table_blocks)
  55. for need_remove in need_remove_list:
  56. layout_dets.remove(need_remove)
  57. def __fix_axis(self):
  58. need_remove_list = []
  59. layout_dets = self.__page_model_info['layout_dets']
  60. for layout_det in layout_dets:
  61. x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
  62. bbox = [
  63. int(x0 / self.__scale),
  64. int(y0 / self.__scale),
  65. int(x1 / self.__scale),
  66. int(y1 / self.__scale),
  67. ]
  68. layout_det['bbox'] = bbox
  69. # 删除高度或者宽度小于等于0的spans
  70. if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
  71. need_remove_list.append(layout_det)
  72. for need_remove in need_remove_list:
  73. layout_dets.remove(need_remove)
  74. def __fix_by_remove_low_confidence(self):
  75. need_remove_list = []
  76. layout_dets = self.__page_model_info['layout_dets']
  77. for layout_det in layout_dets:
  78. if layout_det['score'] <= 0.05:
  79. need_remove_list.append(layout_det)
  80. else:
  81. continue
  82. for need_remove in need_remove_list:
  83. layout_dets.remove(need_remove)
  84. def __fix_by_remove_high_iou_and_low_confidence(self):
  85. need_remove_list = []
  86. layout_dets = list(filter(
  87. lambda x: x['category_id'] in [
  88. CategoryId.Title,
  89. CategoryId.Text,
  90. CategoryId.ImageBody,
  91. CategoryId.ImageCaption,
  92. CategoryId.TableBody,
  93. CategoryId.TableCaption,
  94. CategoryId.TableFootnote,
  95. CategoryId.InterlineEquation_Layout,
  96. CategoryId.InterlineEquationNumber_Layout,
  97. ], self.__page_model_info['layout_dets']
  98. )
  99. )
  100. for i in range(len(layout_dets)):
  101. for j in range(i + 1, len(layout_dets)):
  102. layout_det1 = layout_dets[i]
  103. layout_det2 = layout_dets[j]
  104. if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
  105. layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
  106. if layout_det_need_remove not in need_remove_list:
  107. need_remove_list.append(layout_det_need_remove)
  108. for need_remove in need_remove_list:
  109. self.__page_model_info['layout_dets'].remove(need_remove)
  110. def __fix_footnote(self):
  111. footnotes = []
  112. figures = []
  113. tables = []
  114. for obj in self.__page_model_info['layout_dets']:
  115. if obj['category_id'] == CategoryId.TableFootnote:
  116. footnotes.append(obj)
  117. elif obj['category_id'] == CategoryId.ImageBody:
  118. figures.append(obj)
  119. elif obj['category_id'] == CategoryId.TableBody:
  120. tables.append(obj)
  121. if len(footnotes) * len(figures) == 0:
  122. continue
  123. dis_figure_footnote = {}
  124. dis_table_footnote = {}
  125. for i in range(len(footnotes)):
  126. for j in range(len(figures)):
  127. pos_flag_count = sum(
  128. list(
  129. map(
  130. lambda x: 1 if x else 0,
  131. bbox_relative_pos(
  132. footnotes[i]['bbox'], figures[j]['bbox']
  133. ),
  134. )
  135. )
  136. )
  137. if pos_flag_count > 1:
  138. continue
  139. dis_figure_footnote[i] = min(
  140. self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
  141. dis_figure_footnote.get(i, float('inf')),
  142. )
  143. for i in range(len(footnotes)):
  144. for j in range(len(tables)):
  145. pos_flag_count = sum(
  146. list(
  147. map(
  148. lambda x: 1 if x else 0,
  149. bbox_relative_pos(
  150. footnotes[i]['bbox'], tables[j]['bbox']
  151. ),
  152. )
  153. )
  154. )
  155. if pos_flag_count > 1:
  156. continue
  157. dis_table_footnote[i] = min(
  158. self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
  159. dis_table_footnote.get(i, float('inf')),
  160. )
  161. for i in range(len(footnotes)):
  162. if i not in dis_figure_footnote:
  163. continue
  164. if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
  165. footnotes[i]['category_id'] = CategoryId.ImageFootnote
  166. def _bbox_distance(self, bbox1, bbox2):
  167. left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
  168. flags = [left, right, bottom, top]
  169. count = sum([1 if v else 0 for v in flags])
  170. if count > 1:
  171. return float('inf')
  172. if left or right:
  173. l1 = bbox1[3] - bbox1[1]
  174. l2 = bbox2[3] - bbox2[1]
  175. else:
  176. l1 = bbox1[2] - bbox1[0]
  177. l2 = bbox2[2] - bbox2[0]
  178. if l2 > l1 and (l2 - l1) / l1 > 0.3:
  179. return float('inf')
  180. return bbox_distance(bbox1, bbox2)
  181. def __reduct_overlap(self, bboxes):
  182. N = len(bboxes)
  183. keep = [True] * N
  184. for i in range(N):
  185. for j in range(N):
  186. if i == j:
  187. continue
  188. if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
  189. keep[i] = False
  190. return [bboxes[i] for i in range(N) if keep[i]]
  191. def __tie_up_category_by_distance_v3(
  192. self,
  193. subject_category_id: int,
  194. object_category_id: int,
  195. ):
  196. subjects = self.__reduct_overlap(
  197. list(
  198. map(
  199. lambda x: {'bbox': x['bbox'], 'score': x['score']},
  200. filter(
  201. lambda x: x['category_id'] == subject_category_id,
  202. self.__page_model_info['layout_dets'],
  203. ),
  204. )
  205. )
  206. )
  207. objects = self.__reduct_overlap(
  208. list(
  209. map(
  210. lambda x: {'bbox': x['bbox'], 'score': x['score']},
  211. filter(
  212. lambda x: x['category_id'] == object_category_id,
  213. self.__page_model_info['layout_dets'],
  214. ),
  215. )
  216. )
  217. )
  218. ret = []
  219. N, M = len(subjects), len(objects)
  220. subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
  221. objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
  222. OBJ_IDX_OFFSET = 10000
  223. SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
  224. all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
  225. seen_idx = set()
  226. seen_sub_idx = set()
  227. while N > len(seen_sub_idx):
  228. candidates = []
  229. for idx, kind, x0, y0 in all_boxes_with_idx:
  230. if idx in seen_idx:
  231. continue
  232. candidates.append((idx, kind, x0, y0))
  233. if len(candidates) == 0:
  234. break
  235. left_x = min([v[2] for v in candidates])
  236. top_y = min([v[3] for v in candidates])
  237. candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
  238. fst_idx, fst_kind, left_x, top_y = candidates[0]
  239. candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y)**2)
  240. nxt = None
  241. for i in range(1, len(candidates)):
  242. if candidates[i][1] ^ fst_kind == 1:
  243. nxt = candidates[i]
  244. break
  245. if nxt is None:
  246. break
  247. if fst_kind == SUB_BIT_KIND:
  248. sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
  249. else:
  250. sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
  251. pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
  252. nearest_dis = float('inf')
  253. for i in range(N):
  254. if i in seen_idx or i == sub_idx:continue
  255. nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
  256. if pair_dis >= 3*nearest_dis:
  257. seen_idx.add(sub_idx)
  258. continue
  259. seen_idx.add(sub_idx)
  260. seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
  261. seen_sub_idx.add(sub_idx)
  262. ret.append(
  263. {
  264. 'sub_bbox': {
  265. 'bbox': subjects[sub_idx]['bbox'],
  266. 'score': subjects[sub_idx]['score'],
  267. },
  268. 'obj_bboxes': [
  269. {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
  270. ],
  271. 'sub_idx': sub_idx,
  272. }
  273. )
  274. for i in range(len(objects)):
  275. j = i + OBJ_IDX_OFFSET
  276. if j in seen_idx:
  277. continue
  278. seen_idx.add(j)
  279. nearest_dis, nearest_sub_idx = float('inf'), -1
  280. for k in range(len(subjects)):
  281. dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
  282. if dis < nearest_dis:
  283. nearest_dis = dis
  284. nearest_sub_idx = k
  285. for k in range(len(subjects)):
  286. if k != nearest_sub_idx: continue
  287. if k in seen_sub_idx:
  288. for kk in range(len(ret)):
  289. if ret[kk]['sub_idx'] == k:
  290. ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
  291. break
  292. else:
  293. ret.append(
  294. {
  295. 'sub_bbox': {
  296. 'bbox': subjects[k]['bbox'],
  297. 'score': subjects[k]['score'],
  298. },
  299. 'obj_bboxes': [
  300. {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
  301. ],
  302. 'sub_idx': k,
  303. }
  304. )
  305. seen_sub_idx.add(k)
  306. seen_idx.add(k)
  307. for i in range(len(subjects)):
  308. if i in seen_sub_idx:
  309. continue
  310. ret.append(
  311. {
  312. 'sub_bbox': {
  313. 'bbox': subjects[i]['bbox'],
  314. 'score': subjects[i]['score'],
  315. },
  316. 'obj_bboxes': [],
  317. 'sub_idx': i,
  318. }
  319. )
  320. return ret
  321. def get_imgs(self):
  322. with_captions = self.__tie_up_category_by_distance_v3(
  323. CategoryId.ImageBody, CategoryId.ImageCaption
  324. )
  325. with_footnotes = self.__tie_up_category_by_distance_v3(
  326. CategoryId.ImageBody, CategoryId.ImageFootnote
  327. )
  328. ret = []
  329. for v in with_captions:
  330. record = {
  331. 'image_body': v['sub_bbox'],
  332. 'image_caption_list': v['obj_bboxes'],
  333. }
  334. filter_idx = v['sub_idx']
  335. d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
  336. record['image_footnote_list'] = d['obj_bboxes']
  337. ret.append(record)
  338. return ret
  339. def get_tables(self) -> list:
  340. with_captions = self.__tie_up_category_by_distance_v3(
  341. CategoryId.TableBody, CategoryId.TableCaption
  342. )
  343. with_footnotes = self.__tie_up_category_by_distance_v3(
  344. CategoryId.TableBody, CategoryId.TableFootnote
  345. )
  346. ret = []
  347. for v in with_captions:
  348. record = {
  349. 'table_body': v['sub_bbox'],
  350. 'table_caption_list': v['obj_bboxes'],
  351. }
  352. filter_idx = v['sub_idx']
  353. d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
  354. record['table_footnote_list'] = d['obj_bboxes']
  355. ret.append(record)
  356. return ret
  357. def get_equations(self) -> tuple[list, list, list]: # 有坐标,也有字
  358. inline_equations = self.__get_blocks_by_type(
  359. CategoryId.InlineEquation, ['latex']
  360. )
  361. interline_equations = self.__get_blocks_by_type(
  362. CategoryId.InterlineEquation_YOLO, ['latex']
  363. )
  364. interline_equations_blocks = self.__get_blocks_by_type(
  365. CategoryId.InterlineEquation_Layout
  366. )
  367. return inline_equations, interline_equations, interline_equations_blocks
  368. def get_discarded(self) -> list: # 自研模型,只有坐标
  369. blocks = self.__get_blocks_by_type(CategoryId.Abandon)
  370. return blocks
  371. def get_text_blocks(self) -> list: # 自研模型搞的,只有坐标,没有字
  372. blocks = self.__get_blocks_by_type(CategoryId.Text)
  373. return blocks
  374. def get_title_blocks(self) -> list: # 自研模型,只有坐标,没字
  375. blocks = self.__get_blocks_by_type(CategoryId.Title)
  376. return blocks
  377. def get_all_spans(self) -> list:
  378. def remove_duplicate_spans(spans):
  379. new_spans = []
  380. for span in spans:
  381. if not any(span == existing_span for existing_span in new_spans):
  382. new_spans.append(span)
  383. return new_spans
  384. all_spans = []
  385. layout_dets = self.__page_model_info['layout_dets']
  386. allow_category_id_list = [
  387. CategoryId.ImageBody,
  388. CategoryId.TableBody,
  389. CategoryId.InlineEquation,
  390. CategoryId.InterlineEquation_YOLO,
  391. CategoryId.OcrText,
  392. ]
  393. """当成span拼接的"""
  394. for layout_det in layout_dets:
  395. category_id = layout_det['category_id']
  396. if category_id in allow_category_id_list:
  397. span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
  398. if category_id == CategoryId.ImageBody:
  399. span['type'] = ContentType.IMAGE
  400. elif category_id == CategoryId.TableBody:
  401. # 获取table模型结果
  402. latex = layout_det.get('latex', None)
  403. html = layout_det.get('html', None)
  404. if latex:
  405. span['latex'] = latex
  406. elif html:
  407. span['html'] = html
  408. span['type'] = ContentType.TABLE
  409. elif category_id == CategoryId.InlineEquation:
  410. span['content'] = layout_det['latex']
  411. span['type'] = ContentType.INLINE_EQUATION
  412. elif category_id == CategoryId.InterlineEquation_YOLO:
  413. span['content'] = layout_det['latex']
  414. span['type'] = ContentType.INTERLINE_EQUATION
  415. elif category_id == CategoryId.OcrText:
  416. span['content'] = layout_det['text']
  417. span['type'] = ContentType.TEXT
  418. all_spans.append(span)
  419. return remove_duplicate_spans(all_spans)
  420. def __get_blocks_by_type(
  421. self, category_type: int, extra_col=None
  422. ) -> list:
  423. if extra_col is None:
  424. extra_col = []
  425. blocks = []
  426. layout_dets = self.__page_model_info.get('layout_dets', [])
  427. for item in layout_dets:
  428. category_id = item.get('category_id', -1)
  429. bbox = item.get('bbox', None)
  430. if category_id == category_type:
  431. block = {
  432. 'bbox': bbox,
  433. 'score': item.get('score'),
  434. }
  435. for col in extra_col:
  436. block[col] = item.get(col, None)
  437. blocks.append(block)
  438. return blocks