boost_with_cuda.rst 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. Boost With Cuda
  2. ================
  3. If your device supports CUDA and meets the GPU requirements of the
  4. mainline environment, you can use GPU acceleration. Please select the
  5. appropriate guide based on your system:
  6. - :ref:`ubuntu_22_04_lts_section`
  7. - :ref:`windows_10_or_11_section`
  8. - Quick Deployment with Docker
  9. .. admonition:: Important
  10. :class: tip
  11. Docker requires a GPU with at least 16GB of VRAM, and all acceleration features are enabled by default.
  12. Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
  13. .. code-block:: bash
  14. bash docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
  15. .. code:: sh
  16. wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
  17. docker build -t mineru:latest .
  18. docker run --rm -it --gpus=all mineru:latest /bin/bash
  19. magic-pdf --help
  20. .. _ubuntu_22_04_lts_section:
  21. Ubuntu 22.04 LTS
  22. -----------------
  23. 1. Check if NVIDIA Drivers Are Installed
  24. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25. .. code:: sh
  26. nvidia-smi
  27. If you see information similar to the following, it means that the
  28. NVIDIA drivers are already installed, and you can skip Step 2.
  29. .. note::
  30. ``CUDA Version`` should be >= 12.1, If the displayed version number is less than 12.1, please upgrade the driver.
  31. .. code:: text
  32. +---------------------------------------------------------------------------------------+
  33. | NVIDIA-SMI 537.34 Driver Version: 537.34 CUDA Version: 12.2 |
  34. |-----------------------------------------+----------------------+----------------------+
  35. | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
  36. | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
  37. | | | MIG M. |
  38. |=========================================+======================+======================|
  39. | 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
  40. | 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
  41. | | | N/A |
  42. +-----------------------------------------+----------------------+----------------------+
  43. 2. Install the Driver
  44. ~~~~~~~~~~~~~~~~~~~~~
  45. If no driver is installed, use the following command:
  46. .. code:: sh
  47. sudo apt-get update
  48. sudo apt-get install nvidia-driver-545
  49. Install the proprietary driver and restart your computer after
  50. installation.
  51. .. code:: sh
  52. reboot
  53. 3. Install Anaconda
  54. ~~~~~~~~~~~~~~~~~~~
  55. If Anaconda is already installed, skip this step.
  56. .. code:: sh
  57. wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
  58. bash Anaconda3-2024.06-1-Linux-x86_64.sh
  59. In the final step, enter ``yes``, close the terminal, and reopen it.
  60. 4. Create an Environment Using Conda
  61. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  62. Specify Python version 3.10.
  63. .. code:: sh
  64. conda create -n MinerU python=3.10
  65. conda activate MinerU
  66. 5. Install Applications
  67. ~~~~~~~~~~~~~~~~~~~~~~~
  68. .. code:: sh
  69. pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
  70. .. admonition:: Important
  71. :class: tip
  72. ❗ After installation, make sure to check the version of ``magic-pdf`` using the following command:
  73. .. code:: sh
  74. magic-pdf --version
  75. If the version number is less than 0.7.0, please report the issue.
  76. 6. Download Models
  77. ~~~~~~~~~~~~~~~~~~
  78. Refer to detailed instructions on :doc:`download_model_weight_files`
  79. 7. Understand the Location of the Configuration File
  80. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  81. After completing the `6. Download Models <#6-download-models>`__ step,
  82. the script will automatically generate a ``magic-pdf.json`` file in the
  83. user directory and configure the default model path. You can find the
  84. ``magic-pdf.json`` file in your user directory.
  85. .. admonition:: TIP
  86. :class: tip
  87. The user directory for Linux is “/home/username”.
  88. 8. First Run
  89. ~~~~~~~~~~~~
  90. Download a sample file from the repository and test it.
  91. .. code:: sh
  92. wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf
  93. magic-pdf -p small_ocr.pdf -o ./output
  94. 9. Test CUDA Acceleration
  95. ~~~~~~~~~~~~~~~~~~~~~~~~~
  96. If your graphics card has at least **8GB** of VRAM, follow these steps
  97. to test CUDA acceleration:
  98. 1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
  99. configuration file located in your home directory.
  100. .. code:: json
  101. {
  102. "device-mode": "cuda"
  103. }
  104. 2. Test CUDA acceleration with the following command:
  105. .. code:: sh
  106. magic-pdf -p small_ocr.pdf -o ./output
  107. 10. Enable CUDA Acceleration for OCR
  108. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  109. 1. Download ``paddlepaddle-gpu``. Installation will automatically enable
  110. OCR acceleration.
  111. .. code:: sh
  112. python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
  113. 2. Test OCR acceleration with the following command:
  114. .. code:: sh
  115. magic-pdf -p small_ocr.pdf -o ./output
  116. .. _windows_10_or_11_section:
  117. Windows 10/11
  118. --------------
  119. 1. Install CUDA and cuDNN
  120. ~~~~~~~~~~~~~~~~~~~~~~~~~
  121. Required versions: CUDA 11.8 + cuDNN 8.7.0
  122. - CUDA 11.8: https://developer.nvidia.com/cuda-11-8-0-download-archive
  123. - cuDNN v8.7.0 (November 28th, 2022), for CUDA 11.x:
  124. https://developer.nvidia.com/rdp/cudnn-archive
  125. 2. Install Anaconda
  126. ~~~~~~~~~~~~~~~~~~~
  127. If Anaconda is already installed, you can skip this step.
  128. Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
  129. 3. Create an Environment Using Conda
  130. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  131. Python version must be 3.10.
  132. ::
  133. conda create -n MinerU python=3.10
  134. conda activate MinerU
  135. 4. Install Applications
  136. ~~~~~~~~~~~~~~~~~~~~~~~
  137. ::
  138. pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
  139. .. admonition:: Important
  140. :class: tip
  141. ❗️After installation, verify the version of ``magic-pdf``:
  142. .. code:: bash
  143. magic-pdf --version
  144. If the version number is less than 0.7.0, please report it in the issues section.
  145. 5. Download Models
  146. ~~~~~~~~~~~~~~~~~~
  147. Refer to detailed instructions on :doc:`download_model_weight_files`
  148. 6. Understand the Location of the Configuration File
  149. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  150. After completing the `5. Download Models <#5-download-models>`__ step,
  151. the script will automatically generate a ``magic-pdf.json`` file in the
  152. user directory and configure the default model path. You can find the
  153. ``magic-pdf.json`` file in your 【user directory】 .
  154. .. admonition:: Tip
  155. :class: tip
  156. The user directory for Windows is “C:/Users/username”.
  157. 7. First Run
  158. ~~~~~~~~~~~~
  159. Download a sample file from the repository and test it.
  160. .. code:: powershell
  161. wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf -O small_ocr.pdf
  162. magic-pdf -p small_ocr.pdf -o ./output
  163. 8. Test CUDA Acceleration
  164. ~~~~~~~~~~~~~~~~~~~~~~~~~
  165. If your graphics card has at least 8GB of VRAM, follow these steps to
  166. test CUDA-accelerated parsing performance.
  167. 1. **Overwrite the installation of torch and torchvision** supporting CUDA.
  168. .. code:: sh
  169. pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
  170. .. admonition:: Important
  171. :class: tip
  172. ❗️Ensure the following versions are specified in the command:
  173. .. code:: sh
  174. torch==2.3.1 torchvision==0.18.1
  175. These are the highest versions we support. Installing higher versions without specifying them will cause the program to fail.
  176. 2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
  177. configuration file located in your user directory.
  178. .. code:: json
  179. {
  180. "device-mode": "cuda"
  181. }
  182. 3. **Run the following command to test CUDA acceleration**:
  183. ::
  184. magic-pdf -p small_ocr.pdf -o ./output
  185. 9. Enable CUDA Acceleration for OCR
  186. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  187. 1. **Download paddlepaddle-gpu**, which will automatically enable OCR
  188. acceleration upon installation.
  189. ::
  190. pip install paddlepaddle-gpu==2.6.1
  191. 2. **Run the following command to test OCR acceleration**:
  192. ::
  193. magic-pdf -p small_ocr.pdf -o ./output