vlm_analyze.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import time
  3. from loguru import logger
  4. from .model_output_to_middle_json import result_to_middle_json
  5. from ...data.data_reader_writer import DataWriter
  6. from mineru.utils.pdf_image_tools import load_images_from_pdf
  7. from ...utils.enum_class import ImageType
  8. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  9. from mineru_vl_utils import MinerUClient
  10. class ModelSingleton:
  11. _instance = None
  12. _models = {}
  13. def __new__(cls, *args, **kwargs):
  14. if cls._instance is None:
  15. cls._instance = super().__new__(cls)
  16. return cls._instance
  17. def get_model(
  18. self,
  19. backend: str,
  20. model_path: str | None,
  21. server_url: str | None,
  22. **kwargs,
  23. ) -> MinerUClient:
  24. key = (backend, model_path, server_url)
  25. if key not in self._models:
  26. model = None
  27. processor = None
  28. vllm_llm = None
  29. if backend in ['transformers', 'vllm-engine'] and not model_path:
  30. model_path = auto_download_and_get_model_root_path("/","vlm")
  31. if backend == "transformers":
  32. if not model_path:
  33. raise ValueError("model_path must be provided when model or processor is None.")
  34. try:
  35. from transformers import (
  36. AutoProcessor,
  37. Qwen2VLForConditionalGeneration,
  38. )
  39. from transformers import __version__ as transformers_version
  40. except ImportError:
  41. raise ImportError("Please install transformers to use the transformers backend.")
  42. from packaging import version
  43. if version.parse(transformers_version) >= version.parse("4.56.0"):
  44. dtype_key = "dtype"
  45. else:
  46. dtype_key = "torch_dtype"
  47. model = Qwen2VLForConditionalGeneration.from_pretrained(
  48. model_path,
  49. device_map="auto",
  50. **{dtype_key: "auto"}, # type: ignore
  51. )
  52. processor = AutoProcessor.from_pretrained(
  53. model_path,
  54. use_fast=True,
  55. )
  56. elif backend == "vllm-engine":
  57. if not model_path:
  58. raise ValueError("model_path must be provided when vllm_llm is None.")
  59. try:
  60. import vllm
  61. except ImportError:
  62. raise ImportError("Please install vllm to use the vllm-engine backend.")
  63. logger.debug(kwargs)
  64. if "gpu_memory_utilization" not in kwargs:
  65. kwargs["gpu_memory_utilization"] = 0.5
  66. if "model" not in kwargs:
  67. kwargs["model"] = model_path
  68. # 使用kwargs为 vllm初始化参数
  69. vllm_llm = vllm.LLM(**kwargs)
  70. self._models[key] = MinerUClient(
  71. backend=backend,
  72. model=model,
  73. processor=processor,
  74. vllm_llm=vllm_llm,
  75. server_url=server_url,
  76. )
  77. return self._models[key]
  78. def doc_analyze(
  79. pdf_bytes,
  80. image_writer: DataWriter | None,
  81. predictor: MinerUClient | None = None,
  82. backend="transformers",
  83. model_path: str | None = None,
  84. server_url: str | None = None,
  85. **kwargs,
  86. ):
  87. if predictor is None:
  88. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  89. # load_images_start = time.time()
  90. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  91. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  92. # load_images_time = round(time.time() - load_images_start, 2)
  93. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  94. # infer_start = time.time()
  95. results = predictor.batch_two_step_extract(images=images_pil_list)
  96. # infer_time = round(time.time() - infer_start, 2)
  97. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  98. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  99. return middle_json, results
  100. async def aio_doc_analyze(
  101. pdf_bytes,
  102. image_writer: DataWriter | None,
  103. predictor: MinerUClient | None = None,
  104. backend="transformers",
  105. model_path: str | None = None,
  106. server_url: str | None = None,
  107. **kwargs,
  108. ):
  109. if predictor is None:
  110. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  111. # load_images_start = time.time()
  112. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  113. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  114. # load_images_time = round(time.time() - load_images_start, 2)
  115. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  116. # infer_start = time.time()
  117. results = await predictor.aio_batch_two_step_extract(images=images_pil_list)
  118. # infer_time = round(time.time() - infer_start, 2)
  119. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  120. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  121. return middle_json, results