| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 |
- import json
- from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
- bbox_relative_pos, calculate_iou,
- calculate_overlap_area_in_bbox1_area_ratio)
- from magic_pdf.libs.commons import fitz, join_path
- from magic_pdf.libs.coordinate_transform import get_scale_ratio
- from magic_pdf.libs.local_math import float_gt
- from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
- from magic_pdf.libs.ocr_content_type import CategoryId, ContentType
- from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
- from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
- CAPATION_OVERLAP_AREA_RATIO = 0.6
- class MagicModel:
- """每个函数没有得到元素的时候返回空list."""
- def __fix_axis(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- page_no = model_page_info['page_info']['page_no']
- horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
- model_page_info, self.__docs[page_no]
- )
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det.get('bbox') is not None:
- # 兼容直接输出bbox的模型数据,如paddle
- x0, y0, x1, y1 = layout_det['bbox']
- else:
- # 兼容直接输出poly的模型数据,如xxx
- x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
- bbox = [
- int(x0 / horizontal_scale_ratio),
- int(y0 / vertical_scale_ratio),
- int(x1 / horizontal_scale_ratio),
- int(y1 / vertical_scale_ratio),
- ]
- layout_det['bbox'] = bbox
- # 删除高度或者宽度小于等于0的spans
- if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
- need_remove_list.append(layout_det)
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['score'] <= 0.05:
- need_remove_list.append(layout_det)
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_high_iou_and_low_confidence(self):
- for model_page_info in self.__model_list:
- need_remove_list = []
- layout_dets = model_page_info['layout_dets']
- for layout_det1 in layout_dets:
- for layout_det2 in layout_dets:
- if layout_det1 == layout_det2:
- continue
- if layout_det1['category_id'] in [
- 0,
- 1,
- 2,
- 3,
- 4,
- 5,
- 6,
- 7,
- 8,
- 9,
- ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
- if (
- calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
- > 0.9
- ):
- if layout_det1['score'] < layout_det2['score']:
- layout_det_need_remove = layout_det1
- else:
- layout_det_need_remove = layout_det2
- if layout_det_need_remove not in need_remove_list:
- need_remove_list.append(layout_det_need_remove)
- else:
- continue
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __init__(self, model_list: list, docs: fitz.Document):
- self.__model_list = model_list
- self.__docs = docs
- """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
- self.__fix_axis()
- """删除置信度特别低的模型数据(<0.05),提高质量"""
- self.__fix_by_remove_low_confidence()
- """删除高iou(>0.9)数据中置信度较低的那个"""
- self.__fix_by_remove_high_iou_and_low_confidence()
- self.__fix_footnote()
- def __fix_footnote(self):
- # 3: figure, 5: table, 7: footnote
- for model_page_info in self.__model_list:
- footnotes = []
- figures = []
- tables = []
- for obj in model_page_info['layout_dets']:
- if obj['category_id'] == 7:
- footnotes.append(obj)
- elif obj['category_id'] == 3:
- figures.append(obj)
- elif obj['category_id'] == 5:
- tables.append(obj)
- if len(footnotes) * len(figures) == 0:
- continue
- dis_figure_footnote = {}
- dis_table_footnote = {}
- for i in range(len(footnotes)):
- for j in range(len(figures)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], figures[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_figure_footnote[i] = min(
- bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
- dis_figure_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- for j in range(len(tables)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], tables[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_table_footnote[i] = min(
- bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
- dis_table_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
- footnotes[i]['category_id'] = CategoryId.ImageFootnote
- def __reduct_overlap(self, bboxes):
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def __tie_up_category_by_distance(
- self, page_no, subject_category_id, object_category_id
- ):
- """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
- 只能属于一个 subject."""
- ret = []
- MAX_DIS_OF_POINT = 10**9 + 7
- """
- subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
- 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
- 再求出筛选出的 subjects 和 object 的最短距离
- """
- def may_find_other_nearest_bbox(subject_idx, object_idx):
- ret = float('inf')
- x0 = min(
- all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
- )
- y0 = min(
- all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
- )
- x1 = max(
- all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
- )
- y1 = max(
- all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
- )
- object_area = abs(
- all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
- ) * abs(
- all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
- )
- for i in range(len(all_bboxes)):
- if (
- i == subject_idx
- or all_bboxes[i]['category_id'] != subject_category_id
- ):
- continue
- if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
- all_bboxes[i]['bbox'], [x0, y0, x1, y1]
- ):
- i_area = abs(
- all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
- ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
- if i_area >= object_area:
- ret = min(float('inf'), dis[i][object_idx])
- return ret
- def expand_bbbox(idxes):
- x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
- y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
- x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
- y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
- return min(x0s), min(y0s), max(x1s), max(y1s)
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == subject_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == object_category_id,
- self.__model_list[page_no]['layout_dets'],
- ),
- )
- )
- )
- subject_object_relation_map = {}
- subjects.sort(
- key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
- ) # get the distance !
- all_bboxes = []
- for v in subjects:
- all_bboxes.append(
- {
- 'category_id': subject_category_id,
- 'bbox': v['bbox'],
- 'score': v['score'],
- }
- )
- for v in objects:
- all_bboxes.append(
- {
- 'category_id': object_category_id,
- 'bbox': v['bbox'],
- 'score': v['score'],
- }
- )
- N = len(all_bboxes)
- dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
- for i in range(N):
- for j in range(i):
- if (
- all_bboxes[i]['category_id'] == subject_category_id
- and all_bboxes[j]['category_id'] == subject_category_id
- ):
- continue
- dis[i][j] = bbox_distance(all_bboxes[i]['bbox'], all_bboxes[j]['bbox'])
- dis[j][i] = dis[i][j]
- used = set()
- for i in range(N):
- # 求第 i 个 subject 所关联的 object
- if all_bboxes[i]['category_id'] != subject_category_id:
- continue
- seen = set()
- candidates = []
- arr = []
- for j in range(N):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- if (
- all_bboxes[j]['category_id'] != object_category_id
- or j in used
- or dis[i][j] == MAX_DIS_OF_POINT
- ):
- continue
- left, right, _, _ = bbox_relative_pos(
- all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
- ) # 由 pos_flag_count 相关逻辑保证本段逻辑准确性
- if left or right:
- one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
- else:
- one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
- if dis[i][j] > one_way_dis:
- continue
- arr.append((dis[i][j], j))
- arr.sort(key=lambda x: x[0])
- if len(arr) > 0:
- """
- bug: 离该subject 最近的 object 可能跨越了其它的 subject。
- 比如 [this subect] [some sbuject] [the nearest object of subject]
- """
- if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
- candidates.append(arr[0][1])
- seen.add(arr[0][1])
- # 已经获取初始种子
- for j in set(candidates):
- tmp = []
- for k in range(i + 1, N):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- if (
- all_bboxes[k]['category_id'] != object_category_id
- or k in used
- or k in seen
- or dis[j][k] == MAX_DIS_OF_POINT
- or dis[j][k] > dis[i][j]
- ):
- continue
- is_nearest = True
- for ni in range(i + 1, N):
- if ni in (j, k) or ni in used or ni in seen:
- continue
- if not float_gt(dis[ni][k], dis[j][k]):
- is_nearest = False
- break
- if is_nearest:
- nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
- n_dis = bbox_distance(
- all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
- )
- if float_gt(dis[i][j], n_dis):
- continue
- tmp.append(k)
- seen.add(k)
- candidates = tmp
- if len(candidates) == 0:
- break
- # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
- # 先扩一下 bbox,
- ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
- ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
- # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
- caption_poses = [
- [ox0, oy0, ix0, oy1],
- [ox0, oy0, ox1, iy0],
- [ox0, iy1, ox1, oy1],
- [ix1, oy0, ox1, oy1],
- ]
- caption_areas = []
- for bbox in caption_poses:
- embed_arr = []
- for idx in seen:
- if (
- calculate_overlap_area_in_bbox1_area_ratio(
- all_bboxes[idx]['bbox'], bbox
- )
- > CAPATION_OVERLAP_AREA_RATIO
- ):
- embed_arr.append(idx)
- if len(embed_arr) > 0:
- embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
- embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
- embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
- embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
- caption_areas.append(
- int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
- )
- else:
- caption_areas.append(0)
- subject_object_relation_map[i] = []
- if max(caption_areas) > 0:
- max_area_idx = caption_areas.index(max(caption_areas))
- caption_bbox = caption_poses[max_area_idx]
- for j in seen:
- if (
- calculate_overlap_area_in_bbox1_area_ratio(
- all_bboxes[j]['bbox'], caption_bbox
- )
- > CAPATION_OVERLAP_AREA_RATIO
- ):
- used.add(j)
- subject_object_relation_map[i].append(j)
- for i in sorted(subject_object_relation_map.keys()):
- result = {
- 'subject_body': all_bboxes[i]['bbox'],
- 'all': all_bboxes[i]['bbox'],
- 'score': all_bboxes[i]['score'],
- }
- if len(subject_object_relation_map[i]) > 0:
- x0 = min(
- [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
- )
- y0 = min(
- [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
- )
- x1 = max(
- [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
- )
- y1 = max(
- [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
- )
- result['object_body'] = [x0, y0, x1, y1]
- result['all'] = [
- min(x0, all_bboxes[i]['bbox'][0]),
- min(y0, all_bboxes[i]['bbox'][1]),
- max(x1, all_bboxes[i]['bbox'][2]),
- max(y1, all_bboxes[i]['bbox'][3]),
- ]
- ret.append(result)
- total_subject_object_dis = 0
- # 计算已经配对的 distance 距离
- for i in subject_object_relation_map.keys():
- for j in subject_object_relation_map[i]:
- total_subject_object_dis += bbox_distance(
- all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
- )
- # 计算未匹配的 subject 和 object 的距离(非精确版)
- with_caption_subject = set(
- [
- key
- for key in subject_object_relation_map.keys()
- if len(subject_object_relation_map[i]) > 0
- ]
- )
- for i in range(N):
- if all_bboxes[i]['category_id'] != object_category_id or i in used:
- continue
- candidates = []
- for j in range(N):
- if (
- all_bboxes[j]['category_id'] != subject_category_id
- or j in with_caption_subject
- ):
- continue
- candidates.append((dis[i][j], j))
- if len(candidates) > 0:
- candidates.sort(key=lambda x: x[0])
- total_subject_object_dis += candidates[0][1]
- with_caption_subject.add(j)
- return ret, total_subject_object_dis
- def get_imgs(self, page_no: int):
- with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
- with_footnotes, _ = self.__tie_up_category_by_distance(
- page_no, 3, CategoryId.ImageFootnote
- )
- ret = []
- N, M = len(with_captions), len(with_footnotes)
- assert N == M
- for i in range(N):
- record = {
- 'score': with_captions[i]['score'],
- 'img_caption_bbox': with_captions[i].get('object_body', None),
- 'img_body_bbox': with_captions[i]['subject_body'],
- 'img_footnote_bbox': with_footnotes[i].get('object_body', None),
- }
- x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
- y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
- x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
- y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
- record['bbox'] = [x0, y0, x1, y1]
- ret.append(record)
- return ret
- def get_tables(
- self, page_no: int
- ) -> list: # 3个坐标, caption, table主体,table-note
- with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
- with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
- ret = []
- N, M = len(with_captions), len(with_footnotes)
- assert N == M
- for i in range(N):
- record = {
- 'score': with_captions[i]['score'],
- 'table_caption_bbox': with_captions[i].get('object_body', None),
- 'table_body_bbox': with_captions[i]['subject_body'],
- 'table_footnote_bbox': with_footnotes[i].get('object_body', None),
- }
- x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
- y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
- x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
- y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
- record['bbox'] = [x0, y0, x1, y1]
- ret.append(record)
- return ret
- def get_equations(self, page_no: int) -> list: # 有坐标,也有字
- inline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
- )
- interline_equations = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
- )
- interline_equations_blocks = self.__get_blocks_by_type(
- ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
- )
- return inline_equations, interline_equations, interline_equations_blocks
- def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
- return blocks
- def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
- return blocks
- def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
- blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
- return blocks
- def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
- text_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['category_id'] == '15':
- span = {
- 'bbox': layout_det['bbox'],
- 'content': layout_det['text'],
- }
- text_spans.append(span)
- return text_spans
- def get_all_spans(self, page_no: int) -> list:
- def remove_duplicate_spans(spans):
- new_spans = []
- for span in spans:
- if not any(span == existing_span for existing_span in new_spans):
- new_spans.append(span)
- return new_spans
- all_spans = []
- model_page_info = self.__model_list[page_no]
- layout_dets = model_page_info['layout_dets']
- allow_category_id_list = [3, 5, 13, 14, 15]
- """当成span拼接的"""
- # 3: 'image', # 图片
- # 5: 'table', # 表格
- # 13: 'inline_equation', # 行内公式
- # 14: 'interline_equation', # 行间公式
- # 15: 'text', # ocr识别文本
- for layout_det in layout_dets:
- category_id = layout_det['category_id']
- if category_id in allow_category_id_list:
- span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
- if category_id == 3:
- span['type'] = ContentType.Image
- elif category_id == 5:
- # 获取table模型结果
- latex = layout_det.get("latex", None)
- html = layout_det.get("html", None)
- if latex:
- span["latex"] = latex
- elif html:
- span["html"] = html
- span["type"] = ContentType.Table
- elif category_id == 13:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.InlineEquation
- elif category_id == 14:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.InterlineEquation
- elif category_id == 15:
- span['content'] = layout_det['text']
- span['type'] = ContentType.Text
- all_spans.append(span)
- return remove_duplicate_spans(all_spans)
- def get_page_size(self, page_no: int): # 获取页面宽高
- # 获取当前页的page对象
- page = self.__docs[page_no]
- # 获取当前页的宽高
- page_w = page.rect.width
- page_h = page.rect.height
- return page_w, page_h
- def __get_blocks_by_type(
- self, type: int, page_no: int, extra_col: list[str] = []
- ) -> list:
- blocks = []
- for page_dict in self.__model_list:
- layout_dets = page_dict.get('layout_dets', [])
- page_info = page_dict.get('page_info', {})
- page_number = page_info.get('page_no', -1)
- if page_no != page_number:
- continue
- for item in layout_dets:
- category_id = item.get('category_id', -1)
- bbox = item.get('bbox', None)
- if category_id == type:
- block = {
- 'bbox': bbox,
- 'score': item.get('score'),
- }
- for col in extra_col:
- block[col] = item.get(col, None)
- blocks.append(block)
- return blocks
- def get_model_list(self, page_no):
- return self.__model_list[page_no]
- if __name__ == '__main__':
- drw = DiskReaderWriter(r'D:/project/20231108code-clean')
- if 0:
- pdf_file_path = r'linshixuqiu\19983-00.pdf'
- model_file_path = r'linshixuqiu\19983-00_new.json'
- pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
- model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
- model_list = json.loads(model_json_txt)
- write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
- img_bucket_path = 'imgs'
- img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
- pdf_docs = fitz.open('pdf', pdf_bytes)
- magic_model = MagicModel(model_list, pdf_docs)
- if 1:
- model_list = json.loads(
- drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json')
- )
- pdf_bytes = drw.read(
- '/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf', AbsReaderWriter.MODE_BIN
- )
- pdf_docs = fitz.open('pdf', pdf_bytes)
- magic_model = MagicModel(model_list, pdf_docs)
- for i in range(7):
- print(magic_model.get_imgs(i))
|