magic_pdf_parse_main.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. import copy
  2. import json
  3. import os
  4. from loguru import logger
  5. from magic_pdf.data.data_reader_writer import FileBasedDataWriter
  6. from magic_pdf.data.dataset import PymuDocDataset
  7. from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox
  8. from magic_pdf.pipe.OCRPipe import OCRPipe
  9. from magic_pdf.pipe.TXTPipe import TXTPipe
  10. from magic_pdf.pipe.UNIPipe import UNIPipe
  11. # todo: 设备类型选择 (?)
  12. def json_md_dump(
  13. pipe,
  14. md_writer,
  15. pdf_name,
  16. content_list,
  17. md_content,
  18. orig_model_list,
  19. ):
  20. # 写入模型结果到 model.json
  21. md_writer.write_string(
  22. f'{pdf_name}_model.json',
  23. json.dumps(orig_model_list, ensure_ascii=False, indent=4)
  24. )
  25. # 写入中间结果到 middle.json
  26. md_writer.write_string(
  27. f'{pdf_name}_middle.json',
  28. json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4)
  29. )
  30. # text文本结果写入到 conent_list.json
  31. md_writer.write_string(
  32. f'{pdf_name}_content_list.json',
  33. json.dumps(content_list, ensure_ascii=False, indent=4)
  34. )
  35. # 写入结果到 .md 文件中
  36. md_writer.write_string(
  37. f'{pdf_name}.md',
  38. md_content,
  39. )
  40. # 可视化
  41. def draw_visualization_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name):
  42. # 画布局框,附带排序结果
  43. draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name)
  44. # 画 span 框
  45. draw_span_bbox(pdf_info, pdf_bytes, local_md_dir, pdf_file_name)
  46. def pdf_parse_main(
  47. pdf_path: str,
  48. parse_method: str = 'auto',
  49. model_json_path: str = None,
  50. is_json_md_dump: bool = True,
  51. is_draw_visualization_bbox: bool = True,
  52. output_dir: str = None
  53. ):
  54. """执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录.
  55. :param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径
  56. :param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr
  57. :param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应
  58. :param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中
  59. :param is_draw_visualization_bbox: 是否绘制可视化边界框,默认 True,会生成布局框和 span 框的图像
  60. :param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果
  61. """
  62. try:
  63. pdf_name = os.path.basename(pdf_path).split('.')[0]
  64. pdf_path_parent = os.path.dirname(pdf_path)
  65. if output_dir:
  66. output_path = os.path.join(output_dir, pdf_name)
  67. else:
  68. output_path = os.path.join(pdf_path_parent, pdf_name)
  69. output_image_path = os.path.join(output_path, 'images')
  70. # 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中
  71. image_path_parent = os.path.basename(output_image_path)
  72. pdf_bytes = open(pdf_path, 'rb').read() # 读取 pdf 文件的二进制数据
  73. orig_model_list = []
  74. if model_json_path:
  75. # 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型
  76. model_json = json.loads(open(model_json_path, 'r', encoding='utf-8').read())
  77. orig_model_list = copy.deepcopy(model_json)
  78. else:
  79. model_json = []
  80. # 执行解析步骤
  81. image_writer, md_writer = FileBasedDataWriter(output_image_path), FileBasedDataWriter(output_path)
  82. # 选择解析方式
  83. if parse_method == 'auto':
  84. jso_useful_key = {'_pdf_type': '', 'model_list': model_json}
  85. pipe = UNIPipe(PymuDocDataset(pdf_bytes), jso_useful_key, image_writer)
  86. elif parse_method == 'txt':
  87. pipe = TXTPipe(PymuDocDataset(pdf_bytes), model_json, image_writer)
  88. elif parse_method == 'ocr':
  89. pipe = OCRPipe(PymuDocDataset(pdf_bytes), model_json, image_writer)
  90. else:
  91. logger.error('unknown parse method, only auto, ocr, txt allowed')
  92. exit(1)
  93. # 执行分类
  94. pipe.pipe_classify()
  95. # 如果没有传入模型数据,则使用内置模型解析
  96. if len(model_json) == 0:
  97. pipe.pipe_analyze() # 解析
  98. orig_model_list = copy.deepcopy(pipe.model_list)
  99. # 执行解析
  100. pipe.pipe_parse()
  101. # 保存 text 和 md 格式的结果
  102. content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode='none')
  103. md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode='none')
  104. if is_json_md_dump:
  105. json_md_dump(pipe, md_writer, pdf_name, content_list, md_content, orig_model_list)
  106. if is_draw_visualization_bbox:
  107. draw_visualization_bbox(pipe.pdf_mid_data['pdf_info'], pdf_bytes, output_path, pdf_name)
  108. except Exception as e:
  109. logger.exception(e)
  110. # 测试
  111. if __name__ == '__main__':
  112. current_script_dir = os.path.dirname(os.path.abspath(__file__))
  113. demo_names = ['demo1', 'demo2', 'small_ocr']
  114. for name in demo_names:
  115. file_path = os.path.join(current_script_dir, f'{name}.pdf')
  116. pdf_parse_main(file_path)