pytorch_paddle.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import copy
  3. import os.path
  4. import warnings
  5. from pathlib import Path
  6. import cv2
  7. import numpy as np
  8. import yaml
  9. from loguru import logger
  10. from mineru.backend.pipeline.config_reader import get_device, get_local_models_dir
  11. from ....utils.ocr_utils import check_img, preprocess_image, sorted_boxes, merge_det_boxes, update_det_boxes, get_rotate_crop_image
  12. from .tools.infer.predict_system import TextSystem
  13. from .tools.infer import pytorchocr_utility as utility
  14. import argparse
  15. latin_lang = [
  16. 'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr', # noqa: E126
  17. 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl',
  18. 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv',
  19. 'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german'
  20. ]
  21. arabic_lang = ['ar', 'fa', 'ug', 'ur']
  22. cyrillic_lang = [
  23. 'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava', # noqa: E126
  24. 'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
  25. ]
  26. devanagari_lang = [
  27. 'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom', # noqa: E126
  28. 'sa', 'bgc'
  29. ]
  30. def get_model_params(lang, config):
  31. if lang in config['lang']:
  32. params = config['lang'][lang]
  33. det = params.get('det')
  34. rec = params.get('rec')
  35. dict_file = params.get('dict')
  36. return det, rec, dict_file
  37. else:
  38. raise Exception (f'Language {lang} not supported')
  39. root_dir = Path(__file__).resolve().parent
  40. class PytorchPaddleOCR(TextSystem):
  41. def __init__(self, *args, **kwargs):
  42. parser = utility.init_args()
  43. args = parser.parse_args(args)
  44. self.lang = kwargs.get('lang', 'ch')
  45. device = get_device()
  46. if device == 'cpu' and self.lang in ['ch', 'ch_server']:
  47. logger.warning("The current device in use is CPU. To ensure the speed of parsing, the language is automatically switched to ch_lite.")
  48. self.lang = 'ch_lite'
  49. if self.lang in latin_lang:
  50. self.lang = 'latin'
  51. elif self.lang in arabic_lang:
  52. self.lang = 'arabic'
  53. elif self.lang in cyrillic_lang:
  54. self.lang = 'cyrillic'
  55. elif self.lang in devanagari_lang:
  56. self.lang = 'devanagari'
  57. else:
  58. pass
  59. models_config_path = os.path.join(root_dir, 'pytorchocr', 'utils', 'resources', 'models_config.yml')
  60. with open(models_config_path) as file:
  61. config = yaml.safe_load(file)
  62. det, rec, dict_file = get_model_params(self.lang, config)
  63. ocr_models_dir = os.path.join(get_local_models_dir(), 'OCR', 'paddleocr_torch')
  64. kwargs['det_model_path'] = os.path.join(ocr_models_dir, det)
  65. kwargs['rec_model_path'] = os.path.join(ocr_models_dir, rec)
  66. kwargs['rec_char_dict_path'] = os.path.join(root_dir, 'pytorchocr', 'utils', 'resources', 'dict', dict_file)
  67. # kwargs['rec_batch_num'] = 8
  68. kwargs['device'] = device
  69. default_args = vars(args)
  70. default_args.update(kwargs)
  71. args = argparse.Namespace(**default_args)
  72. super().__init__(args)
  73. def ocr(self,
  74. img,
  75. det=True,
  76. rec=True,
  77. mfd_res=None,
  78. tqdm_enable=False,
  79. ):
  80. assert isinstance(img, (np.ndarray, list, str, bytes))
  81. if isinstance(img, list) and det == True:
  82. logger.error('When input a list of images, det must be false')
  83. exit(0)
  84. img = check_img(img)
  85. imgs = [img]
  86. with warnings.catch_warnings():
  87. warnings.simplefilter("ignore", category=RuntimeWarning)
  88. if det and rec:
  89. ocr_res = []
  90. for img in imgs:
  91. img = preprocess_image(img)
  92. dt_boxes, rec_res = self.__call__(img, mfd_res=mfd_res)
  93. if not dt_boxes and not rec_res:
  94. ocr_res.append(None)
  95. continue
  96. tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
  97. ocr_res.append(tmp_res)
  98. return ocr_res
  99. elif det and not rec:
  100. ocr_res = []
  101. for img in imgs:
  102. img = preprocess_image(img)
  103. dt_boxes, elapse = self.text_detector(img)
  104. # logger.debug("dt_boxes num : {}, elapsed : {}".format(len(dt_boxes), elapse))
  105. if dt_boxes is None:
  106. ocr_res.append(None)
  107. continue
  108. dt_boxes = sorted_boxes(dt_boxes)
  109. # merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
  110. dt_boxes = merge_det_boxes(dt_boxes)
  111. if mfd_res:
  112. dt_boxes = update_det_boxes(dt_boxes, mfd_res)
  113. tmp_res = [box.tolist() for box in dt_boxes]
  114. ocr_res.append(tmp_res)
  115. return ocr_res
  116. elif not det and rec:
  117. ocr_res = []
  118. for img in imgs:
  119. if not isinstance(img, list):
  120. img = preprocess_image(img)
  121. img = [img]
  122. rec_res, elapse = self.text_recognizer(img, tqdm_enable=tqdm_enable)
  123. # logger.debug("rec_res num : {}, elapsed : {}".format(len(rec_res), elapse))
  124. ocr_res.append(rec_res)
  125. return ocr_res
  126. def __call__(self, img, mfd_res=None):
  127. if img is None:
  128. logger.debug("no valid image provided")
  129. return None, None
  130. ori_im = img.copy()
  131. dt_boxes, elapse = self.text_detector(img)
  132. if dt_boxes is None:
  133. logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
  134. return None, None
  135. else:
  136. pass
  137. # logger.debug("dt_boxes num : {}, elapsed : {}".format(len(dt_boxes), elapse))
  138. img_crop_list = []
  139. dt_boxes = sorted_boxes(dt_boxes)
  140. # merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
  141. dt_boxes = merge_det_boxes(dt_boxes)
  142. if mfd_res:
  143. dt_boxes = update_det_boxes(dt_boxes, mfd_res)
  144. for bno in range(len(dt_boxes)):
  145. tmp_box = copy.deepcopy(dt_boxes[bno])
  146. img_crop = get_rotate_crop_image(ori_im, tmp_box)
  147. img_crop_list.append(img_crop)
  148. rec_res, elapse = self.text_recognizer(img_crop_list)
  149. # logger.debug("rec_res num : {}, elapsed : {}".format(len(rec_res), elapse))
  150. filter_boxes, filter_rec_res = [], []
  151. for box, rec_result in zip(dt_boxes, rec_res):
  152. text, score = rec_result
  153. if score >= self.drop_score:
  154. filter_boxes.append(box)
  155. filter_rec_res.append(rec_result)
  156. return filter_boxes, filter_rec_res
  157. if __name__ == '__main__':
  158. pytorch_paddle_ocr = PytorchPaddleOCR()
  159. img = cv2.imread("/Users/myhloli/Downloads/screenshot-20250326-194348.png")
  160. dt_boxes, rec_res = pytorch_paddle_ocr(img)
  161. ocr_res = []
  162. if not dt_boxes and not rec_res:
  163. ocr_res.append(None)
  164. else:
  165. tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
  166. ocr_res.append(tmp_res)
  167. print(ocr_res)