vlm_analyze.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import os
  3. import time
  4. from loguru import logger
  5. from .model_output_to_middle_json import result_to_middle_json
  6. from ...data.data_reader_writer import DataWriter
  7. from mineru.utils.pdf_image_tools import load_images_from_pdf
  8. from ...utils.config_reader import get_device
  9. from ...utils.enum_class import ImageType
  10. from ...utils.model_utils import get_vram
  11. from ...utils.models_download_utils import auto_download_and_get_model_root_path
  12. from mineru_vl_utils import MinerUClient, MinerULogitsProcessor
  13. from packaging import version
  14. class ModelSingleton:
  15. _instance = None
  16. _models = {}
  17. def __new__(cls, *args, **kwargs):
  18. if cls._instance is None:
  19. cls._instance = super().__new__(cls)
  20. return cls._instance
  21. def get_model(
  22. self,
  23. backend: str,
  24. model_path: str | None,
  25. server_url: str | None,
  26. **kwargs,
  27. ) -> MinerUClient:
  28. key = (backend, model_path, server_url)
  29. if key not in self._models:
  30. start_time = time.time()
  31. model = None
  32. processor = None
  33. vllm_llm = None
  34. vllm_async_llm = None
  35. batch_size = 0
  36. if backend in ['transformers', 'vllm-engine', "vllm-async-engine"] and not model_path:
  37. model_path = auto_download_and_get_model_root_path("/","vlm")
  38. if backend == "transformers":
  39. try:
  40. from transformers import (
  41. AutoProcessor,
  42. Qwen2VLForConditionalGeneration,
  43. )
  44. from transformers import __version__ as transformers_version
  45. except ImportError:
  46. raise ImportError("Please install transformers to use the transformers backend.")
  47. if version.parse(transformers_version) >= version.parse("4.56.0"):
  48. dtype_key = "dtype"
  49. else:
  50. dtype_key = "torch_dtype"
  51. device = get_device()
  52. model = Qwen2VLForConditionalGeneration.from_pretrained(
  53. model_path,
  54. device_map={"": device},
  55. **{dtype_key: "auto"}, # type: ignore
  56. )
  57. processor = AutoProcessor.from_pretrained(
  58. model_path,
  59. use_fast=True,
  60. )
  61. try:
  62. vram = get_vram(device)
  63. if vram is not None:
  64. gpu_memory = int(os.getenv('MINERU_VIRTUAL_VRAM_SIZE', round(vram)))
  65. if gpu_memory >= 16:
  66. batch_size = 8
  67. elif gpu_memory >= 8:
  68. batch_size = 4
  69. else:
  70. batch_size = 1
  71. logger.info(f'gpu_memory: {gpu_memory} GB, batch_size: {batch_size}')
  72. else:
  73. # Default batch_ratio when VRAM can't be determined
  74. batch_size = 1
  75. logger.info(f'Could not determine GPU memory, using default batch_ratio: {batch_size}')
  76. except Exception as e:
  77. logger.warning(f'Error determining VRAM: {e}, using default batch_ratio: 1')
  78. batch_size = 1
  79. elif backend == "vllm-engine":
  80. try:
  81. import vllm
  82. vllm_version = vllm.__version__
  83. except ImportError:
  84. raise ImportError("Please install vllm to use the vllm-engine backend.")
  85. if "gpu_memory_utilization" not in kwargs:
  86. kwargs["gpu_memory_utilization"] = 0.5
  87. if "model" not in kwargs:
  88. kwargs["model"] = model_path
  89. if version.parse(vllm_version) >= version.parse("0.10.1") and "logits_processors" not in kwargs:
  90. kwargs["logits_processors"] = [MinerULogitsProcessor]
  91. # 使用kwargs为 vllm初始化参数
  92. vllm_llm = vllm.LLM(**kwargs)
  93. elif backend == "vllm-async-engine":
  94. try:
  95. from vllm.engine.arg_utils import AsyncEngineArgs
  96. from vllm.v1.engine.async_llm import AsyncLLM
  97. from vllm import __version__ as vllm_version
  98. except ImportError:
  99. raise ImportError("Please install vllm to use the vllm-async-engine backend.")
  100. if "gpu_memory_utilization" not in kwargs:
  101. kwargs["gpu_memory_utilization"] = 0.5
  102. if "model" not in kwargs:
  103. kwargs["model"] = model_path
  104. if version.parse(vllm_version) >= version.parse("0.10.1") and "logits_processors" not in kwargs:
  105. kwargs["logits_processors"] = [MinerULogitsProcessor]
  106. # 使用kwargs为 vllm初始化参数
  107. vllm_async_llm = AsyncLLM.from_engine_args(AsyncEngineArgs(**kwargs))
  108. self._models[key] = MinerUClient(
  109. backend=backend,
  110. model=model,
  111. processor=processor,
  112. vllm_llm=vllm_llm,
  113. vllm_async_llm=vllm_async_llm,
  114. server_url=server_url,
  115. batch_size=batch_size,
  116. )
  117. elapsed = round(time.time() - start_time, 2)
  118. logger.info(f"get {backend} predictor cost: {elapsed}s")
  119. return self._models[key]
  120. def doc_analyze(
  121. pdf_bytes,
  122. image_writer: DataWriter | None,
  123. predictor: MinerUClient | None = None,
  124. backend="transformers",
  125. model_path: str | None = None,
  126. server_url: str | None = None,
  127. **kwargs,
  128. ):
  129. if predictor is None:
  130. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  131. # load_images_start = time.time()
  132. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  133. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  134. # load_images_time = round(time.time() - load_images_start, 2)
  135. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  136. # infer_start = time.time()
  137. results = predictor.batch_two_step_extract(images=images_pil_list)
  138. # infer_time = round(time.time() - infer_start, 2)
  139. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  140. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  141. return middle_json, results
  142. async def aio_doc_analyze(
  143. pdf_bytes,
  144. image_writer: DataWriter | None,
  145. predictor: MinerUClient | None = None,
  146. backend="transformers",
  147. model_path: str | None = None,
  148. server_url: str | None = None,
  149. **kwargs,
  150. ):
  151. if predictor is None:
  152. predictor = ModelSingleton().get_model(backend, model_path, server_url, **kwargs)
  153. # load_images_start = time.time()
  154. images_list, pdf_doc = load_images_from_pdf(pdf_bytes, image_type=ImageType.PIL)
  155. images_pil_list = [image_dict["img_pil"] for image_dict in images_list]
  156. # load_images_time = round(time.time() - load_images_start, 2)
  157. # logger.info(f"load images cost: {load_images_time}, speed: {round(len(images_base64_list)/load_images_time, 3)} images/s")
  158. # infer_start = time.time()
  159. results = await predictor.aio_batch_two_step_extract(images=images_pil_list)
  160. # infer_time = round(time.time() - infer_start, 2)
  161. # logger.info(f"infer finished, cost: {infer_time}, speed: {round(len(results)/infer_time, 3)} page/s")
  162. middle_json = result_to_middle_json(results, images_list, pdf_doc, image_writer)
  163. return middle_json, results