boost_with_cuda.rst 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. Boost With Cuda
  2. ================
  3. If your device supports CUDA and meets the GPU requirements of the
  4. mainline environment, you can use GPU acceleration. Please select the
  5. appropriate guide based on your system:
  6. - :ref:`ubuntu_22_04_lts_section`
  7. - :ref:`windows_10_or_11_section`
  8. - Quick Deployment with Docker > Docker requires a GPU with at least
  9. 16GB of VRAM, and all acceleration features are enabled by default.
  10. .. note::
  11. Before running this Docker, you can use the following command to
  12. check if your device supports CUDA acceleration on Docker.
  13. bash docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
  14. .. code:: sh
  15. wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
  16. docker build -t mineru:latest .
  17. docker run --rm -it --gpus=all mineru:latest /bin/bash
  18. magic-pdf --help
  19. .. _ubuntu_22_04_lts_section:
  20. Ubuntu 22.04 LTS
  21. -----------------
  22. 1. Check if NVIDIA Drivers Are Installed
  23. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  24. .. code:: sh
  25. nvidia-smi
  26. If you see information similar to the following, it means that the
  27. NVIDIA drivers are already installed, and you can skip Step 2.
  28. Notice:``CUDA Version`` should be >= 12.1, If the displayed version
  29. number is less than 12.1, please upgrade the driver.
  30. .. code:: text
  31. +---------------------------------------------------------------------------------------+
  32. | NVIDIA-SMI 537.34 Driver Version: 537.34 CUDA Version: 12.2 |
  33. |-----------------------------------------+----------------------+----------------------+
  34. | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
  35. | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
  36. | | | MIG M. |
  37. |=========================================+======================+======================|
  38. | 0 NVIDIA GeForce RTX 3060 Ti WDDM | 00000000:01:00.0 On | N/A |
  39. | 0% 51C P8 12W / 200W | 1489MiB / 8192MiB | 5% Default |
  40. | | | N/A |
  41. +-----------------------------------------+----------------------+----------------------+
  42. 2. Install the Driver
  43. ~~~~~~~~~~~~~~~~~~~~~
  44. If no driver is installed, use the following command:
  45. .. code:: sh
  46. sudo apt-get update
  47. sudo apt-get install nvidia-driver-545
  48. Install the proprietary driver and restart your computer after
  49. installation.
  50. .. code:: sh
  51. reboot
  52. 3. Install Anaconda
  53. ~~~~~~~~~~~~~~~~~~~
  54. If Anaconda is already installed, skip this step.
  55. .. code:: sh
  56. wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh
  57. bash Anaconda3-2024.06-1-Linux-x86_64.sh
  58. In the final step, enter ``yes``, close the terminal, and reopen it.
  59. 4. Create an Environment Using Conda
  60. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  61. Specify Python version 3.10.
  62. .. code:: sh
  63. conda create -n MinerU python=3.10
  64. conda activate MinerU
  65. 5. Install Applications
  66. ~~~~~~~~~~~~~~~~~~~~~~~
  67. .. code:: sh
  68. pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
  69. ❗ After installation, make sure to check the version of ``magic-pdf``
  70. using the following command:
  71. .. code:: sh
  72. magic-pdf --version
  73. If the version number is less than 0.7.0, please report the issue.
  74. 6. Download Models
  75. ~~~~~~~~~~~~~~~~~~
  76. Refer to detailed instructions on :doc:`download_model_weight_files`
  77. 7. Understand the Location of the Configuration File
  78. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  79. After completing the `6. Download Models <#6-download-models>`__ step,
  80. the script will automatically generate a ``magic-pdf.json`` file in the
  81. user directory and configure the default model path. You can find the
  82. ``magic-pdf.json`` file in your user directory.
  83. The user directory for Linux is “/home/username”.
  84. 8. First Run
  85. ~~~~~~~~~~~~
  86. Download a sample file from the repository and test it.
  87. .. code:: sh
  88. wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf
  89. magic-pdf -p small_ocr.pdf -o ./output
  90. 9. Test CUDA Acceleration
  91. ~~~~~~~~~~~~~~~~~~~~~~~~~
  92. If your graphics card has at least **8GB** of VRAM, follow these steps
  93. to test CUDA acceleration:
  94. 1. Modify the value of ``"device-mode"`` in the ``magic-pdf.json``
  95. configuration file located in your home directory.
  96. .. code:: json
  97. {
  98. "device-mode": "cuda"
  99. }
  100. 2. Test CUDA acceleration with the following command:
  101. .. code:: sh
  102. magic-pdf -p small_ocr.pdf -o ./output
  103. 10. Enable CUDA Acceleration for OCR
  104. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  105. 1. Download ``paddlepaddle-gpu``. Installation will automatically enable
  106. OCR acceleration.
  107. .. code:: sh
  108. python -m pip install paddlepaddle-gpu==3.0.0b1 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
  109. 2. Test OCR acceleration with the following command:
  110. .. code:: sh
  111. magic-pdf -p small_ocr.pdf -o ./output
  112. .. _windows_10_or_11_section:
  113. Windows 10/11
  114. --------------
  115. 1. Install CUDA and cuDNN
  116. ~~~~~~~~~~~~~~~~~~~~~~~~~
  117. Required versions: CUDA 11.8 + cuDNN 8.7.0
  118. - CUDA 11.8: https://developer.nvidia.com/cuda-11-8-0-download-archive
  119. - cuDNN v8.7.0 (November 28th, 2022), for CUDA 11.x:
  120. https://developer.nvidia.com/rdp/cudnn-archive
  121. 2. Install Anaconda
  122. ~~~~~~~~~~~~~~~~~~~
  123. If Anaconda is already installed, you can skip this step.
  124. Download link: https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Windows-x86_64.exe
  125. 3. Create an Environment Using Conda
  126. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  127. Python version must be 3.10.
  128. ::
  129. conda create -n MinerU python=3.10
  130. conda activate MinerU
  131. 4. Install Applications
  132. ~~~~~~~~~~~~~~~~~~~~~~~
  133. ::
  134. pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
  135. ..
  136. ❗️After installation, verify the version of ``magic-pdf``:
  137. .. code:: bash
  138. magic-pdf --version
  139. If the version number is less than 0.7.0, please report it in the
  140. issues section.
  141. 5. Download Models
  142. ~~~~~~~~~~~~~~~~~~
  143. Refer to detailed instructions on :doc:`download_model_weight_files`
  144. 6. Understand the Location of the Configuration File
  145. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  146. After completing the `5. Download Models <#5-download-models>`__ step,
  147. the script will automatically generate a ``magic-pdf.json`` file in the
  148. user directory and configure the default model path. You can find the
  149. ``magic-pdf.json`` file in your 【user directory】 .
  150. The user directory for Windows is “C:/Users/username”.
  151. 7. First Run
  152. ~~~~~~~~~~~~
  153. Download a sample file from the repository and test it.
  154. .. code:: powershell
  155. wget https://github.com/opendatalab/MinerU/raw/master/demo/small_ocr.pdf -O small_ocr.pdf
  156. magic-pdf -p small_ocr.pdf -o ./output
  157. 8. Test CUDA Acceleration
  158. ~~~~~~~~~~~~~~~~~~~~~~~~~
  159. If your graphics card has at least 8GB of VRAM, follow these steps to
  160. test CUDA-accelerated parsing performance.
  161. 1. **Overwrite the installation of torch and torchvision** supporting
  162. CUDA.
  163. ::
  164. pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
  165. ..
  166. ❗️Ensure the following versions are specified in the command:
  167. ::
  168. torch==2.3.1 torchvision==0.18.1
  169. These are the highest versions we support. Installing higher
  170. versions without specifying them will cause the program to fail.
  171. 2. **Modify the value of ``"device-mode"``** in the ``magic-pdf.json``
  172. configuration file located in your user directory.
  173. .. code:: json
  174. {
  175. "device-mode": "cuda"
  176. }
  177. 3. **Run the following command to test CUDA acceleration**:
  178. ::
  179. magic-pdf -p small_ocr.pdf -o ./output
  180. 9. Enable CUDA Acceleration for OCR
  181. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  182. 1. **Download paddlepaddle-gpu**, which will automatically enable OCR
  183. acceleration upon installation.
  184. ::
  185. pip install paddlepaddle-gpu==2.6.1
  186. 2. **Run the following command to test OCR acceleration**:
  187. ::
  188. magic-pdf -p small_ocr.pdf -o ./output