pytorch_paddle.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203
  1. # Copyright (c) Opendatalab. All rights reserved.
  2. import copy
  3. import os.path
  4. import warnings
  5. from pathlib import Path
  6. import cv2
  7. import numpy as np
  8. import yaml
  9. from loguru import logger
  10. from mineru.backend.pipeline.config_reader import get_device
  11. from mineru.utils.enum_class import ModelPath
  12. from mineru.utils.models_download_utils import get_file_from_repos
  13. from ....utils.ocr_utils import check_img, preprocess_image, sorted_boxes, merge_det_boxes, update_det_boxes, get_rotate_crop_image
  14. from .tools.infer.predict_system import TextSystem
  15. from .tools.infer import pytorchocr_utility as utility
  16. import argparse
  17. latin_lang = [
  18. 'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr', # noqa: E126
  19. 'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl',
  20. 'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv',
  21. 'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german'
  22. ]
  23. arabic_lang = ['ar', 'fa', 'ug', 'ur']
  24. cyrillic_lang = [
  25. 'ru', 'rs_cyrillic', 'be', 'bg', 'uk', 'mn', 'abq', 'ady', 'kbd', 'ava', # noqa: E126
  26. 'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
  27. ]
  28. devanagari_lang = [
  29. 'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom', # noqa: E126
  30. 'sa', 'bgc'
  31. ]
  32. def get_model_params(lang, config):
  33. if lang in config['lang']:
  34. params = config['lang'][lang]
  35. det = params.get('det')
  36. rec = params.get('rec')
  37. dict_file = params.get('dict')
  38. return det, rec, dict_file
  39. else:
  40. raise Exception (f'Language {lang} not supported')
  41. root_dir = Path(__file__).resolve().parent
  42. class PytorchPaddleOCR(TextSystem):
  43. def __init__(self, *args, **kwargs):
  44. parser = utility.init_args()
  45. args = parser.parse_args(args)
  46. self.lang = kwargs.get('lang', 'ch')
  47. device = get_device()
  48. if device == 'cpu' and self.lang in ['ch', 'ch_server']:
  49. logger.warning("The current device in use is CPU. To ensure the speed of parsing, the language is automatically switched to ch_lite.")
  50. self.lang = 'ch_lite'
  51. if self.lang in latin_lang:
  52. self.lang = 'latin'
  53. elif self.lang in arabic_lang:
  54. self.lang = 'arabic'
  55. elif self.lang in cyrillic_lang:
  56. self.lang = 'cyrillic'
  57. elif self.lang in devanagari_lang:
  58. self.lang = 'devanagari'
  59. else:
  60. pass
  61. models_config_path = os.path.join(root_dir, 'pytorchocr', 'utils', 'resources', 'models_config.yml')
  62. with open(models_config_path) as file:
  63. config = yaml.safe_load(file)
  64. det, rec, dict_file = get_model_params(self.lang, config)
  65. ocr_models_dir = ModelPath.pytorch_paddle
  66. det_model_path = get_file_from_repos(f"{ocr_models_dir}/{det}")
  67. rec_model_path = get_file_from_repos(f"{ocr_models_dir}/{rec}")
  68. kwargs['det_model_path'] = det_model_path
  69. kwargs['rec_model_path'] = rec_model_path
  70. kwargs['rec_char_dict_path'] = os.path.join(root_dir, 'pytorchocr', 'utils', 'resources', 'dict', dict_file)
  71. # kwargs['rec_batch_num'] = 8
  72. kwargs['device'] = device
  73. default_args = vars(args)
  74. default_args.update(kwargs)
  75. args = argparse.Namespace(**default_args)
  76. super().__init__(args)
  77. def ocr(self,
  78. img,
  79. det=True,
  80. rec=True,
  81. mfd_res=None,
  82. tqdm_enable=False,
  83. ):
  84. assert isinstance(img, (np.ndarray, list, str, bytes))
  85. if isinstance(img, list) and det == True:
  86. logger.error('When input a list of images, det must be false')
  87. exit(0)
  88. img = check_img(img)
  89. imgs = [img]
  90. with warnings.catch_warnings():
  91. warnings.simplefilter("ignore", category=RuntimeWarning)
  92. if det and rec:
  93. ocr_res = []
  94. for img in imgs:
  95. img = preprocess_image(img)
  96. dt_boxes, rec_res = self.__call__(img, mfd_res=mfd_res)
  97. if not dt_boxes and not rec_res:
  98. ocr_res.append(None)
  99. continue
  100. tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
  101. ocr_res.append(tmp_res)
  102. return ocr_res
  103. elif det and not rec:
  104. ocr_res = []
  105. for img in imgs:
  106. img = preprocess_image(img)
  107. dt_boxes, elapse = self.text_detector(img)
  108. # logger.debug("dt_boxes num : {}, elapsed : {}".format(len(dt_boxes), elapse))
  109. if dt_boxes is None:
  110. ocr_res.append(None)
  111. continue
  112. dt_boxes = sorted_boxes(dt_boxes)
  113. # merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
  114. dt_boxes = merge_det_boxes(dt_boxes)
  115. if mfd_res:
  116. dt_boxes = update_det_boxes(dt_boxes, mfd_res)
  117. tmp_res = [box.tolist() for box in dt_boxes]
  118. ocr_res.append(tmp_res)
  119. return ocr_res
  120. elif not det and rec:
  121. ocr_res = []
  122. for img in imgs:
  123. if not isinstance(img, list):
  124. img = preprocess_image(img)
  125. img = [img]
  126. rec_res, elapse = self.text_recognizer(img, tqdm_enable=tqdm_enable)
  127. # logger.debug("rec_res num : {}, elapsed : {}".format(len(rec_res), elapse))
  128. ocr_res.append(rec_res)
  129. return ocr_res
  130. def __call__(self, img, mfd_res=None):
  131. if img is None:
  132. logger.debug("no valid image provided")
  133. return None, None
  134. ori_im = img.copy()
  135. dt_boxes, elapse = self.text_detector(img)
  136. if dt_boxes is None:
  137. logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
  138. return None, None
  139. else:
  140. pass
  141. # logger.debug("dt_boxes num : {}, elapsed : {}".format(len(dt_boxes), elapse))
  142. img_crop_list = []
  143. dt_boxes = sorted_boxes(dt_boxes)
  144. # merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
  145. dt_boxes = merge_det_boxes(dt_boxes)
  146. if mfd_res:
  147. dt_boxes = update_det_boxes(dt_boxes, mfd_res)
  148. for bno in range(len(dt_boxes)):
  149. tmp_box = copy.deepcopy(dt_boxes[bno])
  150. img_crop = get_rotate_crop_image(ori_im, tmp_box)
  151. img_crop_list.append(img_crop)
  152. rec_res, elapse = self.text_recognizer(img_crop_list)
  153. # logger.debug("rec_res num : {}, elapsed : {}".format(len(rec_res), elapse))
  154. filter_boxes, filter_rec_res = [], []
  155. for box, rec_result in zip(dt_boxes, rec_res):
  156. text, score = rec_result
  157. if score >= self.drop_score:
  158. filter_boxes.append(box)
  159. filter_rec_res.append(rec_result)
  160. return filter_boxes, filter_rec_res
  161. if __name__ == '__main__':
  162. pytorch_paddle_ocr = PytorchPaddleOCR()
  163. img = cv2.imread("/Users/myhloli/Downloads/screenshot-20250326-194348.png")
  164. dt_boxes, rec_res = pytorch_paddle_ocr(img)
  165. ocr_res = []
  166. if not dt_boxes and not rec_res:
  167. ocr_res.append(None)
  168. else:
  169. tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
  170. ocr_res.append(tmp_res)
  171. print(ocr_res)