| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import re
- def deal_isolate_span(thead_part):
- """
- Deal with isolate span cases in this function.
- It causes by wrong prediction in structure recognition model.
- eg. predict <td rowspan="2"></td> to <td></td> rowspan="2"></b></td>.
- :param thead_part:
- :return:
- """
- # 1. find out isolate span tokens.
- isolate_pattern = (
- r"<td></td> rowspan='(\d)+' colspan='(\d)+'></b></td>|"
- r"<td></td> colspan='(\d)+' rowspan='(\d)+'></b></td>|"
- r"<td></td> rowspan='(\d)+'></b></td>|"
- r"<td></td> colspan='(\d)+'></b></td>"
- )
- isolate_iter = re.finditer(isolate_pattern, thead_part)
- isolate_list = [i.group() for i in isolate_iter]
- # 2. find out span number, by step 1 result.
- span_pattern = (
- r" rowspan='(\d)+' colspan='(\d)+'|"
- r" colspan='(\d)+' rowspan='(\d)+'|"
- r" rowspan='(\d)+'|"
- r" colspan='(\d)+'"
- )
- corrected_list = []
- for isolate_item in isolate_list:
- span_part = re.search(span_pattern, isolate_item)
- spanStr_in_isolateItem = span_part.group()
- # 3. merge the span number into the span token format string.
- if spanStr_in_isolateItem is not None:
- corrected_item = f"<td{spanStr_in_isolateItem}></td>"
- corrected_list.append(corrected_item)
- else:
- corrected_list.append(None)
- # 4. replace original isolated token.
- for corrected_item, isolate_item in zip(corrected_list, isolate_list):
- if corrected_item is not None:
- thead_part = thead_part.replace(isolate_item, corrected_item)
- else:
- pass
- return thead_part
- def deal_duplicate_bb(thead_part):
- """
- Deal duplicate <b> or </b> after replace.
- Keep one <b></b> in a <td></td> token.
- :param thead_part:
- :return:
- """
- # 1. find out <td></td> in <thead></thead>.
- td_pattern = (
- r"<td rowspan='(\d)+' colspan='(\d)+'>(.+?)</td>|"
- r"<td colspan='(\d)+' rowspan='(\d)+'>(.+?)</td>|"
- r"<td rowspan='(\d)+'>(.+?)</td>|"
- r"<td colspan='(\d)+'>(.+?)</td>|"
- r"<td>(.*?)</td>"
- )
- td_iter = re.finditer(td_pattern, thead_part)
- td_list = [t.group() for t in td_iter]
- # 2. is multiply <b></b> in <td></td> or not?
- new_td_list = []
- for td_item in td_list:
- if td_item.count("<b>") > 1 or td_item.count("</b>") > 1:
- # multiply <b></b> in <td></td> case.
- # 1. remove all <b></b>
- td_item = td_item.replace("<b>", "").replace("</b>", "")
- # 2. replace <tb> -> <tb><b>, </tb> -> </b></tb>.
- td_item = td_item.replace("<td>", "<td><b>").replace("</td>", "</b></td>")
- new_td_list.append(td_item)
- else:
- new_td_list.append(td_item)
- # 3. replace original thead part.
- for td_item, new_td_item in zip(td_list, new_td_list):
- thead_part = thead_part.replace(td_item, new_td_item)
- return thead_part
- def deal_bb(result_token):
- """
- In our opinion, <b></b> always occurs in <thead></thead> text's context.
- This function will find out all tokens in <thead></thead> and insert <b></b> by manual.
- :param result_token:
- :return:
- """
- # find out <thead></thead> parts.
- thead_pattern = "<thead>(.*?)</thead>"
- if re.search(thead_pattern, result_token) is None:
- return result_token
- thead_part = re.search(thead_pattern, result_token).group()
- origin_thead_part = copy.deepcopy(thead_part)
- # check "rowspan" or "colspan" occur in <thead></thead> parts or not .
- span_pattern = r"<td rowspan='(\d)+' colspan='(\d)+'>|<td colspan='(\d)+' rowspan='(\d)+'>|<td rowspan='(\d)+'>|<td colspan='(\d)+'>"
- span_iter = re.finditer(span_pattern, thead_part)
- span_list = [s.group() for s in span_iter]
- has_span_in_head = True if len(span_list) > 0 else False
- if not has_span_in_head:
- # <thead></thead> not include "rowspan" or "colspan" branch 1.
- # 1. replace <td> to <td><b>, and </td> to </b></td>
- # 2. it is possible to predict text include <b> or </b> by Text-line recognition,
- # so we replace <b><b> to <b>, and </b></b> to </b>
- thead_part = (
- thead_part.replace("<td>", "<td><b>")
- .replace("</td>", "</b></td>")
- .replace("<b><b>", "<b>")
- .replace("</b></b>", "</b>")
- )
- else:
- # <thead></thead> include "rowspan" or "colspan" branch 2.
- # Firstly, we deal rowspan or colspan cases.
- # 1. replace > to ><b>
- # 2. replace </td> to </b></td>
- # 3. it is possible to predict text include <b> or </b> by Text-line recognition,
- # so we replace <b><b> to <b>, and </b><b> to </b>
- # Secondly, deal ordinary cases like branch 1
- # replace ">" to "<b>"
- replaced_span_list = []
- for sp in span_list:
- replaced_span_list.append(sp.replace(">", "><b>"))
- for sp, rsp in zip(span_list, replaced_span_list):
- thead_part = thead_part.replace(sp, rsp)
- # replace "</td>" to "</b></td>"
- thead_part = thead_part.replace("</td>", "</b></td>")
- # remove duplicated <b> by re.sub
- mb_pattern = "(<b>)+"
- single_b_string = "<b>"
- thead_part = re.sub(mb_pattern, single_b_string, thead_part)
- mgb_pattern = "(</b>)+"
- single_gb_string = "</b>"
- thead_part = re.sub(mgb_pattern, single_gb_string, thead_part)
- # ordinary cases like branch 1
- thead_part = thead_part.replace("<td>", "<td><b>").replace("<b><b>", "<b>")
- # convert <tb><b></b></tb> back to <tb></tb>, empty cell has no <b></b>.
- # but space cell(<tb> </tb>) is suitable for <td><b> </b></td>
- thead_part = thead_part.replace("<td><b></b></td>", "<td></td>")
- # deal with duplicated <b></b>
- thead_part = deal_duplicate_bb(thead_part)
- # deal with isolate span tokens, which causes by wrong predict by structure prediction.
- # eg.PMC5994107_011_00.png
- thead_part = deal_isolate_span(thead_part)
- # replace original result with new thead part.
- result_token = result_token.replace(origin_thead_part, thead_part)
- return result_token
- def deal_eb_token(master_token):
- """
- post process with <eb></eb>, <eb1></eb1>, ...
- emptyBboxTokenDict = {
- "[]": '<eb></eb>',
- "[' ']": '<eb1></eb1>',
- "['<b>', ' ', '</b>']": '<eb2></eb2>',
- "['\\u2028', '\\u2028']": '<eb3></eb3>',
- "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
- "['<b>', '</b>']": '<eb5></eb5>',
- "['<i>', ' ', '</i>']": '<eb6></eb6>',
- "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
- "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
- "['<i>', '</i>']": '<eb9></eb9>',
- "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']": '<eb10></eb10>',
- }
- :param master_token:
- :return:
- """
- master_token = master_token.replace("<eb></eb>", "<td></td>")
- master_token = master_token.replace("<eb1></eb1>", "<td> </td>")
- master_token = master_token.replace("<eb2></eb2>", "<td><b> </b></td>")
- master_token = master_token.replace("<eb3></eb3>", "<td>\u2028\u2028</td>")
- master_token = master_token.replace("<eb4></eb4>", "<td><sup> </sup></td>")
- master_token = master_token.replace("<eb5></eb5>", "<td><b></b></td>")
- master_token = master_token.replace("<eb6></eb6>", "<td><i> </i></td>")
- master_token = master_token.replace("<eb7></eb7>", "<td><b><i></i></b></td>")
- master_token = master_token.replace("<eb8></eb8>", "<td><b><i> </i></b></td>")
- master_token = master_token.replace("<eb9></eb9>", "<td><i></i></td>")
- master_token = master_token.replace(
- "<eb10></eb10>", "<td><b> \u2028 \u2028 </b></td>"
- )
- return master_token
- def distance(box_1, box_2):
- x1, y1, x2, y2 = box_1
- x3, y3, x4, y4 = box_2
- dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4 - x2) + abs(y4 - y2)
- dis_2 = abs(x3 - x1) + abs(y3 - y1)
- dis_3 = abs(x4 - x2) + abs(y4 - y2)
- return dis + min(dis_2, dis_3)
- def compute_iou(rec1, rec2):
- """
- computing IoU
- :param rec1: (y0, x0, y1, x1), which reflects
- (top, left, bottom, right)
- :param rec2: (y0, x0, y1, x1)
- :return: scala value of IoU
- """
- # computing area of each rectangles
- S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
- S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
- # computing the sum_area
- sum_area = S_rec1 + S_rec2
- # find the each edge of intersect rectangle
- left_line = max(rec1[1], rec2[1])
- right_line = min(rec1[3], rec2[3])
- top_line = max(rec1[0], rec2[0])
- bottom_line = min(rec1[2], rec2[2])
- # judge if there is an intersect
- if left_line >= right_line or top_line >= bottom_line:
- return 0.0
- intersect = (right_line - left_line) * (bottom_line - top_line)
- return (intersect / (sum_area - intersect)) * 1.0
|