| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501 |
- from mineru.utils.boxbase import bbox_relative_pos, calculate_iou, bbox_distance, is_in, get_minbox_if_overlap_by_ratio
- from mineru.utils.enum_class import CategoryId, ContentType
- class MagicModel:
- """每个函数没有得到元素的时候返回空list."""
- def __init__(self, page_model_info: dict, scale: float):
- self.__page_model_info = page_model_info
- self.__scale = scale
- """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
- self.__fix_axis()
- """删除置信度特别低的模型数据(<0.05),提高质量"""
- self.__fix_by_remove_low_confidence()
- """删除高iou(>0.9)数据中置信度较低的那个"""
- self.__fix_by_remove_high_iou_and_low_confidence()
- """将部分tbale_footnote修正为image_footnote"""
- self.__fix_footnote()
- """处理重叠的image_body和table_body"""
- self.__fix_by_remove_overlap_image_table_body()
- def __fix_by_remove_overlap_image_table_body(self):
- need_remove_list = []
- layout_dets = self.__page_model_info['layout_dets']
- image_blocks = list(filter(
- lambda x: x['category_id'] == CategoryId.ImageBody, layout_dets
- ))
- table_blocks = list(filter(
- lambda x: x['category_id'] == CategoryId.TableBody, layout_dets
- ))
- def add_need_remove_block(blocks):
- for i in range(len(blocks)):
- for j in range(i + 1, len(blocks)):
- block1 = blocks[i]
- block2 = blocks[j]
- overlap_box = get_minbox_if_overlap_by_ratio(
- block1['bbox'], block2['bbox'], 0.8
- )
- if overlap_box is not None:
- # 判断哪个区块的面积更小,移除较小的区块
- area1 = (block1['bbox'][2] - block1['bbox'][0]) * (block1['bbox'][3] - block1['bbox'][1])
- area2 = (block2['bbox'][2] - block2['bbox'][0]) * (block2['bbox'][3] - block2['bbox'][1])
- if area1 <= area2:
- block_to_remove = block1
- large_block = block2
- else:
- block_to_remove = block2
- large_block = block1
- if block_to_remove not in need_remove_list:
- # 扩展大区块的边界框
- x1, y1, x2, y2 = large_block['bbox']
- sx1, sy1, sx2, sy2 = block_to_remove['bbox']
- x1 = min(x1, sx1)
- y1 = min(y1, sy1)
- x2 = max(x2, sx2)
- y2 = max(y2, sy2)
- large_block['bbox'] = [x1, y1, x2, y2]
- need_remove_list.append(block_to_remove)
- # 处理图像-图像重叠
- add_need_remove_block(image_blocks)
- # 处理表格-表格重叠
- add_need_remove_block(table_blocks)
- # 从布局中移除标记的区块
- for need_remove in need_remove_list:
- if need_remove in layout_dets:
- layout_dets.remove(need_remove)
- def __fix_axis(self):
- need_remove_list = []
- layout_dets = self.__page_model_info['layout_dets']
- for layout_det in layout_dets:
- x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
- bbox = [
- int(x0 / self.__scale),
- int(y0 / self.__scale),
- int(x1 / self.__scale),
- int(y1 / self.__scale),
- ]
- layout_det['bbox'] = bbox
- # 删除高度或者宽度小于等于0的spans
- if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
- need_remove_list.append(layout_det)
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_low_confidence(self):
- need_remove_list = []
- layout_dets = self.__page_model_info['layout_dets']
- for layout_det in layout_dets:
- if layout_det['score'] <= 0.05:
- need_remove_list.append(layout_det)
- else:
- continue
- for need_remove in need_remove_list:
- layout_dets.remove(need_remove)
- def __fix_by_remove_high_iou_and_low_confidence(self):
- need_remove_list = []
- layout_dets = list(filter(
- lambda x: x['category_id'] in [
- CategoryId.Title,
- CategoryId.Text,
- CategoryId.ImageBody,
- CategoryId.ImageCaption,
- CategoryId.TableBody,
- CategoryId.TableCaption,
- CategoryId.TableFootnote,
- CategoryId.InterlineEquation_Layout,
- CategoryId.InterlineEquationNumber_Layout,
- ], self.__page_model_info['layout_dets']
- )
- )
- for i in range(len(layout_dets)):
- for j in range(i + 1, len(layout_dets)):
- layout_det1 = layout_dets[i]
- layout_det2 = layout_dets[j]
- if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
- layout_det_need_remove = layout_det1 if layout_det1['score'] < layout_det2['score'] else layout_det2
- if layout_det_need_remove not in need_remove_list:
- need_remove_list.append(layout_det_need_remove)
- for need_remove in need_remove_list:
- self.__page_model_info['layout_dets'].remove(need_remove)
- def __fix_footnote(self):
- footnotes = []
- figures = []
- tables = []
- for obj in self.__page_model_info['layout_dets']:
- if obj['category_id'] == CategoryId.TableFootnote:
- footnotes.append(obj)
- elif obj['category_id'] == CategoryId.ImageBody:
- figures.append(obj)
- elif obj['category_id'] == CategoryId.TableBody:
- tables.append(obj)
- if len(footnotes) * len(figures) == 0:
- continue
- dis_figure_footnote = {}
- dis_table_footnote = {}
- for i in range(len(footnotes)):
- for j in range(len(figures)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], figures[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_figure_footnote[i] = min(
- self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
- dis_figure_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- for j in range(len(tables)):
- pos_flag_count = sum(
- list(
- map(
- lambda x: 1 if x else 0,
- bbox_relative_pos(
- footnotes[i]['bbox'], tables[j]['bbox']
- ),
- )
- )
- )
- if pos_flag_count > 1:
- continue
- dis_table_footnote[i] = min(
- self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
- dis_table_footnote.get(i, float('inf')),
- )
- for i in range(len(footnotes)):
- if i not in dis_figure_footnote:
- continue
- if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
- footnotes[i]['category_id'] = CategoryId.ImageFootnote
- def _bbox_distance(self, bbox1, bbox2):
- left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
- flags = [left, right, bottom, top]
- count = sum([1 if v else 0 for v in flags])
- if count > 1:
- return float('inf')
- if left or right:
- l1 = bbox1[3] - bbox1[1]
- l2 = bbox2[3] - bbox2[1]
- else:
- l1 = bbox1[2] - bbox1[0]
- l2 = bbox2[2] - bbox2[0]
- if l2 > l1 and (l2 - l1) / l1 > 0.3:
- return float('inf')
- return bbox_distance(bbox1, bbox2)
- def __reduct_overlap(self, bboxes):
- N = len(bboxes)
- keep = [True] * N
- for i in range(N):
- for j in range(N):
- if i == j:
- continue
- if is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
- keep[i] = False
- return [bboxes[i] for i in range(N) if keep[i]]
- def __tie_up_category_by_distance_v3(
- self,
- subject_category_id: int,
- object_category_id: int,
- ):
- subjects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == subject_category_id,
- self.__page_model_info['layout_dets'],
- ),
- )
- )
- )
- objects = self.__reduct_overlap(
- list(
- map(
- lambda x: {'bbox': x['bbox'], 'score': x['score']},
- filter(
- lambda x: x['category_id'] == object_category_id,
- self.__page_model_info['layout_dets'],
- ),
- )
- )
- )
- ret = []
- N, M = len(subjects), len(objects)
- subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
- OBJ_IDX_OFFSET = 10000
- SUB_BIT_KIND, OBJ_BIT_KIND = 0, 1
- all_boxes_with_idx = [(i, SUB_BIT_KIND, sub['bbox'][0], sub['bbox'][1]) for i, sub in enumerate(subjects)] + [(i + OBJ_IDX_OFFSET , OBJ_BIT_KIND, obj['bbox'][0], obj['bbox'][1]) for i, obj in enumerate(objects)]
- seen_idx = set()
- seen_sub_idx = set()
- while N > len(seen_sub_idx):
- candidates = []
- for idx, kind, x0, y0 in all_boxes_with_idx:
- if idx in seen_idx:
- continue
- candidates.append((idx, kind, x0, y0))
- if len(candidates) == 0:
- break
- left_x = min([v[2] for v in candidates])
- top_y = min([v[3] for v in candidates])
- candidates.sort(key=lambda x: (x[2]-left_x) ** 2 + (x[3] - top_y) ** 2)
- fst_idx, fst_kind, left_x, top_y = candidates[0]
- candidates.sort(key=lambda x: (x[2] - left_x) ** 2 + (x[3] - top_y)**2)
- nxt = None
- for i in range(1, len(candidates)):
- if candidates[i][1] ^ fst_kind == 1:
- nxt = candidates[i]
- break
- if nxt is None:
- break
- if fst_kind == SUB_BIT_KIND:
- sub_idx, obj_idx = fst_idx, nxt[0] - OBJ_IDX_OFFSET
- else:
- sub_idx, obj_idx = nxt[0], fst_idx - OBJ_IDX_OFFSET
- pair_dis = bbox_distance(subjects[sub_idx]['bbox'], objects[obj_idx]['bbox'])
- nearest_dis = float('inf')
- for i in range(N):
- if i in seen_idx or i == sub_idx:continue
- nearest_dis = min(nearest_dis, bbox_distance(subjects[i]['bbox'], objects[obj_idx]['bbox']))
- if pair_dis >= 3*nearest_dis:
- seen_idx.add(sub_idx)
- continue
- seen_idx.add(sub_idx)
- seen_idx.add(obj_idx + OBJ_IDX_OFFSET)
- seen_sub_idx.add(sub_idx)
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[sub_idx]['bbox'],
- 'score': subjects[sub_idx]['score'],
- },
- 'obj_bboxes': [
- {'score': objects[obj_idx]['score'], 'bbox': objects[obj_idx]['bbox']}
- ],
- 'sub_idx': sub_idx,
- }
- )
- for i in range(len(objects)):
- j = i + OBJ_IDX_OFFSET
- if j in seen_idx:
- continue
- seen_idx.add(j)
- nearest_dis, nearest_sub_idx = float('inf'), -1
- for k in range(len(subjects)):
- dis = bbox_distance(objects[i]['bbox'], subjects[k]['bbox'])
- if dis < nearest_dis:
- nearest_dis = dis
- nearest_sub_idx = k
- for k in range(len(subjects)):
- if k != nearest_sub_idx: continue
- if k in seen_sub_idx:
- for kk in range(len(ret)):
- if ret[kk]['sub_idx'] == k:
- ret[kk]['obj_bboxes'].append({'score': objects[i]['score'], 'bbox': objects[i]['bbox']})
- break
- else:
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[k]['bbox'],
- 'score': subjects[k]['score'],
- },
- 'obj_bboxes': [
- {'score': objects[i]['score'], 'bbox': objects[i]['bbox']}
- ],
- 'sub_idx': k,
- }
- )
- seen_sub_idx.add(k)
- seen_idx.add(k)
- for i in range(len(subjects)):
- if i in seen_sub_idx:
- continue
- ret.append(
- {
- 'sub_bbox': {
- 'bbox': subjects[i]['bbox'],
- 'score': subjects[i]['score'],
- },
- 'obj_bboxes': [],
- 'sub_idx': i,
- }
- )
- return ret
- def get_imgs(self):
- with_captions = self.__tie_up_category_by_distance_v3(
- CategoryId.ImageBody, CategoryId.ImageCaption
- )
- with_footnotes = self.__tie_up_category_by_distance_v3(
- CategoryId.ImageBody, CategoryId.ImageFootnote
- )
- ret = []
- for v in with_captions:
- record = {
- 'image_body': v['sub_bbox'],
- 'image_caption_list': v['obj_bboxes'],
- }
- filter_idx = v['sub_idx']
- d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
- record['image_footnote_list'] = d['obj_bboxes']
- ret.append(record)
- return ret
- def get_tables(self) -> list:
- with_captions = self.__tie_up_category_by_distance_v3(
- CategoryId.TableBody, CategoryId.TableCaption
- )
- with_footnotes = self.__tie_up_category_by_distance_v3(
- CategoryId.TableBody, CategoryId.TableFootnote
- )
- ret = []
- for v in with_captions:
- record = {
- 'table_body': v['sub_bbox'],
- 'table_caption_list': v['obj_bboxes'],
- }
- filter_idx = v['sub_idx']
- d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
- record['table_footnote_list'] = d['obj_bboxes']
- ret.append(record)
- return ret
- def get_equations(self) -> tuple[list, list, list]: # 有坐标,也有字
- inline_equations = self.__get_blocks_by_type(
- CategoryId.InlineEquation, ['latex']
- )
- interline_equations = self.__get_blocks_by_type(
- CategoryId.InterlineEquation_YOLO, ['latex']
- )
- interline_equations_blocks = self.__get_blocks_by_type(
- CategoryId.InterlineEquation_Layout
- )
- return inline_equations, interline_equations, interline_equations_blocks
- def get_discarded(self) -> list: # 自研模型,只有坐标
- blocks = self.__get_blocks_by_type(CategoryId.Abandon)
- return blocks
- def get_text_blocks(self) -> list: # 自研模型搞的,只有坐标,没有字
- blocks = self.__get_blocks_by_type(CategoryId.Text)
- return blocks
- def get_title_blocks(self) -> list: # 自研模型,只有坐标,没字
- blocks = self.__get_blocks_by_type(CategoryId.Title)
- return blocks
- def get_all_spans(self) -> list:
- def remove_duplicate_spans(spans):
- new_spans = []
- for span in spans:
- if not any(span == existing_span for existing_span in new_spans):
- new_spans.append(span)
- return new_spans
- all_spans = []
- layout_dets = self.__page_model_info['layout_dets']
- allow_category_id_list = [
- CategoryId.ImageBody,
- CategoryId.TableBody,
- CategoryId.InlineEquation,
- CategoryId.InterlineEquation_YOLO,
- CategoryId.OcrText,
- ]
- """当成span拼接的"""
- for layout_det in layout_dets:
- category_id = layout_det['category_id']
- if category_id in allow_category_id_list:
- span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
- if category_id == CategoryId.ImageBody:
- span['type'] = ContentType.IMAGE
- elif category_id == CategoryId.TableBody:
- # 获取table模型结果
- latex = layout_det.get('latex', None)
- html = layout_det.get('html', None)
- if latex:
- span['latex'] = latex
- elif html:
- span['html'] = html
- span['type'] = ContentType.TABLE
- elif category_id == CategoryId.InlineEquation:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.INLINE_EQUATION
- elif category_id == CategoryId.InterlineEquation_YOLO:
- span['content'] = layout_det['latex']
- span['type'] = ContentType.INTERLINE_EQUATION
- elif category_id == CategoryId.OcrText:
- span['content'] = layout_det['text']
- span['type'] = ContentType.TEXT
- all_spans.append(span)
- return remove_duplicate_spans(all_spans)
- def __get_blocks_by_type(
- self, category_type: int, extra_col=None
- ) -> list:
- if extra_col is None:
- extra_col = []
- blocks = []
- layout_dets = self.__page_model_info.get('layout_dets', [])
- for item in layout_dets:
- category_id = item.get('category_id', -1)
- bbox = item.get('bbox', None)
- if category_id == category_type:
- block = {
- 'bbox': bbox,
- 'score': item.get('score'),
- }
- for col in extra_col:
- block[col] = item.get(col, None)
- blocks.append(block)
- return blocks
|