magic_model.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. import json
  2. import math
  3. from magic_pdf.libs.commons import fitz
  4. from loguru import logger
  5. from magic_pdf.libs.commons import join_path
  6. from magic_pdf.libs.coordinate_transform import get_scale_ratio
  7. from magic_pdf.libs.ocr_content_type import ContentType
  8. from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
  9. from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
  10. from magic_pdf.libs.math import float_gt
  11. from magic_pdf.libs.boxbase import (
  12. _is_in,
  13. bbox_relative_pos,
  14. bbox_distance,
  15. _is_part_overlap,
  16. calculate_overlap_area_in_bbox1_area_ratio,
  17. )
  18. from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
  19. CAPATION_OVERLAP_AREA_RATIO = 0.6
  20. class MagicModel:
  21. """
  22. 每个函数没有得到元素的时候返回空list
  23. """
  24. def __fix_axis(self):
  25. for model_page_info in self.__model_list:
  26. need_remove_list = []
  27. page_no = model_page_info["page_info"]["page_no"]
  28. horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
  29. model_page_info, self.__docs[page_no]
  30. )
  31. layout_dets = model_page_info["layout_dets"]
  32. for layout_det in layout_dets:
  33. x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
  34. bbox = [
  35. int(x0 / horizontal_scale_ratio),
  36. int(y0 / vertical_scale_ratio),
  37. int(x1 / horizontal_scale_ratio),
  38. int(y1 / vertical_scale_ratio),
  39. ]
  40. layout_det["bbox"] = bbox
  41. # 删除高度或者宽度为0的spans
  42. if bbox[2] - bbox[0] == 0 or bbox[3] - bbox[1] == 0:
  43. need_remove_list.append(layout_det)
  44. for need_remove in need_remove_list:
  45. layout_dets.remove(need_remove)
  46. def __fix_by_confidence(self):
  47. for model_page_info in self.__model_list:
  48. need_remove_list = []
  49. layout_dets = model_page_info["layout_dets"]
  50. for layout_det in layout_dets:
  51. if layout_det["score"] <= 0.05:
  52. need_remove_list.append(layout_det)
  53. else:
  54. continue
  55. for need_remove in need_remove_list:
  56. layout_dets.remove(need_remove)
  57. def __init__(self, model_list: list, docs: fitz.Document):
  58. self.__model_list = model_list
  59. self.__docs = docs
  60. self.__fix_axis()
  61. self.__fix_by_confidence()
  62. def __reduct_overlap(self, bboxes):
  63. N = len(bboxes)
  64. keep = [True] * N
  65. for i in range(N):
  66. for j in range(N):
  67. if i == j:
  68. continue
  69. if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
  70. keep[i] = False
  71. return [bboxes[i] for i in range(N) if keep[i]]
  72. def __tie_up_category_by_distance(
  73. self, page_no, subject_category_id, object_category_id
  74. ):
  75. """
  76. 假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
  77. """
  78. ret = []
  79. MAX_DIS_OF_POINT = 10**9 + 7
  80. # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
  81. # 再求出筛选出的 subjects 和 object 的最短距离!
  82. def may_find_other_nearest_bbox(subject_idx, object_idx):
  83. ret = float("inf")
  84. x0 = min(
  85. all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
  86. )
  87. y0 = min(
  88. all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
  89. )
  90. x1 = max(
  91. all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
  92. )
  93. y1 = max(
  94. all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
  95. )
  96. object_area = abs(
  97. all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
  98. ) * abs(
  99. all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
  100. )
  101. for i in range(len(all_bboxes)):
  102. if (
  103. i == subject_idx
  104. or all_bboxes[i]["category_id"] != subject_category_id
  105. ):
  106. continue
  107. if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
  108. all_bboxes[i]["bbox"], [x0, y0, x1, y1]
  109. ):
  110. i_area = abs(
  111. all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
  112. ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
  113. if i_area >= object_area:
  114. ret = min(float("inf"), dis[i][object_idx])
  115. return ret
  116. subjects = self.__reduct_overlap(
  117. list(
  118. map(
  119. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  120. filter(
  121. lambda x: x["category_id"] == subject_category_id,
  122. self.__model_list[page_no]["layout_dets"],
  123. ),
  124. )
  125. )
  126. )
  127. objects = self.__reduct_overlap(
  128. list(
  129. map(
  130. lambda x: {"bbox": x["bbox"], "score": x["score"]},
  131. filter(
  132. lambda x: x["category_id"] == object_category_id,
  133. self.__model_list[page_no]["layout_dets"],
  134. ),
  135. )
  136. )
  137. )
  138. subject_object_relation_map = {}
  139. subjects.sort(
  140. key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
  141. ) # get the distance !
  142. all_bboxes = []
  143. for v in subjects:
  144. all_bboxes.append(
  145. {
  146. "category_id": subject_category_id,
  147. "bbox": v["bbox"],
  148. "score": v["score"],
  149. }
  150. )
  151. for v in objects:
  152. all_bboxes.append(
  153. {
  154. "category_id": object_category_id,
  155. "bbox": v["bbox"],
  156. "score": v["score"],
  157. }
  158. )
  159. N = len(all_bboxes)
  160. dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]
  161. for i in range(N):
  162. for j in range(i):
  163. if (
  164. all_bboxes[i]["category_id"] == subject_category_id
  165. and all_bboxes[j]["category_id"] == subject_category_id
  166. ):
  167. continue
  168. dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
  169. dis[j][i] = dis[i][j]
  170. used = set()
  171. for i in range(N):
  172. # 求第 i 个 subject 所关联的 object
  173. if all_bboxes[i]["category_id"] != subject_category_id:
  174. continue
  175. seen = set()
  176. candidates = []
  177. arr = []
  178. for j in range(N):
  179. pos_flag_count = sum(
  180. list(
  181. map(
  182. lambda x: 1 if x else 0,
  183. bbox_relative_pos(
  184. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  185. ),
  186. )
  187. )
  188. )
  189. if pos_flag_count > 1:
  190. continue
  191. if (
  192. all_bboxes[j]["category_id"] != object_category_id
  193. or j in used
  194. or dis[i][j] == MAX_DIS_OF_POINT
  195. ):
  196. continue
  197. arr.append((dis[i][j], j))
  198. arr.sort(key=lambda x: x[0])
  199. if len(arr) > 0:
  200. # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
  201. if may_find_other_nearest_bbox(i, j) >= arr[0][0]:
  202. candidates.append(arr[0][1])
  203. seen.add(arr[0][1])
  204. # 已经获取初始种子
  205. for j in set(candidates):
  206. tmp = []
  207. for k in range(i + 1, N):
  208. pos_flag_count = sum(
  209. list(
  210. map(
  211. lambda x: 1 if x else 0,
  212. bbox_relative_pos(
  213. all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
  214. ),
  215. )
  216. )
  217. )
  218. if pos_flag_count > 1:
  219. continue
  220. if (
  221. all_bboxes[k]["category_id"] != object_category_id
  222. or k in used
  223. or k in seen
  224. or dis[j][k] == MAX_DIS_OF_POINT
  225. ):
  226. continue
  227. is_nearest = True
  228. for l in range(i + 1, N):
  229. if l in (j, k) or l in used or l in seen:
  230. continue
  231. if not float_gt(dis[l][k], dis[j][k]):
  232. is_nearest = False
  233. break
  234. if is_nearest:
  235. tmp.append(k)
  236. seen.add(k)
  237. candidates = tmp
  238. if len(candidates) == 0:
  239. break
  240. # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
  241. # 先扩一下 bbox,
  242. x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
  243. all_bboxes[i]["bbox"][0]
  244. ]
  245. y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
  246. all_bboxes[i]["bbox"][1]
  247. ]
  248. x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
  249. all_bboxes[i]["bbox"][2]
  250. ]
  251. y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
  252. all_bboxes[i]["bbox"][3]
  253. ]
  254. ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
  255. ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]
  256. # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
  257. caption_poses = [
  258. [ox0, oy0, ix0, oy1],
  259. [ox0, oy0, ox1, iy0],
  260. [ox0, iy1, ox1, oy1],
  261. [ix1, oy0, ox1, oy1],
  262. ]
  263. caption_areas = []
  264. for bbox in caption_poses:
  265. embed_arr = []
  266. for idx in seen:
  267. if (
  268. calculate_overlap_area_in_bbox1_area_ratio(
  269. all_bboxes[idx]["bbox"], bbox
  270. )
  271. > CAPATION_OVERLAP_AREA_RATIO
  272. ):
  273. embed_arr.append(idx)
  274. if len(embed_arr) > 0:
  275. embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
  276. embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
  277. embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
  278. embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
  279. caption_areas.append(
  280. int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
  281. )
  282. else:
  283. caption_areas.append(0)
  284. subject_object_relation_map[i] = []
  285. if max(caption_areas) > 0:
  286. max_area_idx = caption_areas.index(max(caption_areas))
  287. caption_bbox = caption_poses[max_area_idx]
  288. for j in seen:
  289. if (
  290. calculate_overlap_area_in_bbox1_area_ratio(
  291. all_bboxes[j]["bbox"], caption_bbox
  292. )
  293. > CAPATION_OVERLAP_AREA_RATIO
  294. ):
  295. used.add(j)
  296. subject_object_relation_map[i].append(j)
  297. for i in sorted(subject_object_relation_map.keys()):
  298. result = {
  299. "subject_body": all_bboxes[i]["bbox"],
  300. "all": all_bboxes[i]["bbox"],
  301. "score": all_bboxes[i]["score"],
  302. }
  303. if len(subject_object_relation_map[i]) > 0:
  304. x0 = min(
  305. [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
  306. )
  307. y0 = min(
  308. [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
  309. )
  310. x1 = max(
  311. [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
  312. )
  313. y1 = max(
  314. [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
  315. )
  316. result["object_body"] = [x0, y0, x1, y1]
  317. result["all"] = [
  318. min(x0, all_bboxes[i]["bbox"][0]),
  319. min(y0, all_bboxes[i]["bbox"][1]),
  320. max(x1, all_bboxes[i]["bbox"][2]),
  321. max(y1, all_bboxes[i]["bbox"][3]),
  322. ]
  323. ret.append(result)
  324. total_subject_object_dis = 0
  325. # 计算已经配对的 distance 距离
  326. for i in subject_object_relation_map.keys():
  327. for j in subject_object_relation_map[i]:
  328. total_subject_object_dis += bbox_distance(
  329. all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
  330. )
  331. # 计算未匹配的 subject 和 object 的距离(非精确版)
  332. with_caption_subject = set(
  333. [
  334. key
  335. for key in subject_object_relation_map.keys()
  336. if len(subject_object_relation_map[i]) > 0
  337. ]
  338. )
  339. for i in range(N):
  340. if all_bboxes[i]["category_id"] != object_category_id or i in used:
  341. continue
  342. candidates = []
  343. for j in range(N):
  344. if (
  345. all_bboxes[j]["category_id"] != subject_category_id
  346. or j in with_caption_subject
  347. ):
  348. continue
  349. candidates.append((dis[i][j], j))
  350. if len(candidates) > 0:
  351. candidates.sort(key=lambda x: x[0])
  352. total_subject_object_dis += candidates[0][1]
  353. with_caption_subject.add(j)
  354. return ret, total_subject_object_dis
  355. def get_imgs(self, page_no: int): # @许瑞
  356. records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
  357. return [
  358. {
  359. "bbox": record["all"],
  360. "img_body_bbox": record["subject_body"],
  361. "img_caption_bbox": record.get("object_body", None),
  362. "score": record["score"],
  363. }
  364. for record in records
  365. ]
  366. def get_tables(
  367. self, page_no: int
  368. ) -> list: # 3个坐标, caption, table主体,table-note
  369. with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
  370. with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
  371. ret = []
  372. N, M = len(with_captions), len(with_footnotes)
  373. assert N == M
  374. for i in range(N):
  375. record = {
  376. "score": with_captions[i]["score"],
  377. "table_caption_bbox": with_captions[i].get("object_body", None),
  378. "table_body_bbox": with_captions[i]["subject_body"],
  379. "table_footnote_bbox": with_footnotes[i].get("object_body", None),
  380. }
  381. x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
  382. y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
  383. x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
  384. y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
  385. record["bbox"] = [x0, y0, x1, y1]
  386. ret.append(record)
  387. return ret
  388. def get_equations(self, page_no: int) -> list: # 有坐标,也有字
  389. inline_equations = self.__get_blocks_by_type(
  390. ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
  391. )
  392. interline_equations = self.__get_blocks_by_type(
  393. ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
  394. )
  395. interline_equations_blocks = self.__get_blocks_by_type(
  396. ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
  397. )
  398. return inline_equations, interline_equations, interline_equations_blocks
  399. def get_discarded(self, page_no: int) -> list: # 自研模型,只有坐标
  400. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
  401. return blocks
  402. def get_text_blocks(self, page_no: int) -> list: # 自研模型搞的,只有坐标,没有字
  403. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
  404. return blocks
  405. def get_title_blocks(self, page_no: int) -> list: # 自研模型,只有坐标,没字
  406. blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
  407. return blocks
  408. def get_ocr_text(self, page_no: int) -> list: # paddle 搞的,有字也有坐标
  409. text_spans = []
  410. model_page_info = self.__model_list[page_no]
  411. layout_dets = model_page_info["layout_dets"]
  412. for layout_det in layout_dets:
  413. if layout_det["category_id"] == "15":
  414. span = {
  415. "bbox": layout_det["bbox"],
  416. "content": layout_det["text"],
  417. }
  418. text_spans.append(span)
  419. return text_spans
  420. def get_all_spans(self, page_no: int) -> list:
  421. all_spans = []
  422. model_page_info = self.__model_list[page_no]
  423. layout_dets = model_page_info["layout_dets"]
  424. allow_category_id_list = [3, 5, 13, 14, 15]
  425. """当成span拼接的"""
  426. # 3: 'image', # 图片
  427. # 5: 'table', # 表格
  428. # 13: 'inline_equation', # 行内公式
  429. # 14: 'interline_equation', # 行间公式
  430. # 15: 'text', # ocr识别文本
  431. for layout_det in layout_dets:
  432. category_id = layout_det["category_id"]
  433. if category_id in allow_category_id_list:
  434. span = {"bbox": layout_det["bbox"]}
  435. if category_id == 3:
  436. span["type"] = ContentType.Image
  437. elif category_id == 5:
  438. span["type"] = ContentType.Table
  439. elif category_id == 13:
  440. span["content"] = layout_det["latex"]
  441. span["type"] = ContentType.InlineEquation
  442. elif category_id == 14:
  443. span["content"] = layout_det["latex"]
  444. span["type"] = ContentType.InterlineEquation
  445. elif category_id == 15:
  446. span["content"] = layout_det["text"]
  447. span["type"] = ContentType.Text
  448. all_spans.append(span)
  449. return all_spans
  450. def get_page_size(self, page_no: int): # 获取页面宽高
  451. # 获取当前页的page对象
  452. page = self.__docs[page_no]
  453. # 获取当前页的宽高
  454. page_w = page.rect.width
  455. page_h = page.rect.height
  456. return page_w, page_h
  457. def __get_blocks_by_type(
  458. self, type: int, page_no: int, extra_col: list[str] = []
  459. ) -> list:
  460. blocks = []
  461. for page_dict in self.__model_list:
  462. layout_dets = page_dict.get("layout_dets", [])
  463. page_info = page_dict.get("page_info", {})
  464. page_number = page_info.get("page_no", -1)
  465. if page_no != page_number:
  466. continue
  467. for item in layout_dets:
  468. category_id = item.get("category_id", -1)
  469. bbox = item.get("bbox", None)
  470. if category_id == type:
  471. block = {"bbox": bbox}
  472. for col in extra_col:
  473. block[col] = item.get(col, None)
  474. blocks.append(block)
  475. return blocks
  476. def get_model_list(self, page_no):
  477. return self.__model_list[page_no]
  478. if __name__ == "__main__":
  479. drw = DiskReaderWriter(r"D:/project/20231108code-clean")
  480. if 0:
  481. pdf_file_path = r"linshixuqiu\19983-00.pdf"
  482. model_file_path = r"linshixuqiu\19983-00_new.json"
  483. pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
  484. model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
  485. model_list = json.loads(model_json_txt)
  486. write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
  487. img_bucket_path = "imgs"
  488. img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
  489. pdf_docs = fitz.open("pdf", pdf_bytes)
  490. magic_model = MagicModel(model_list, pdf_docs)
  491. if 1:
  492. model_list = json.loads(
  493. drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
  494. )
  495. pdf_bytes = drw.read(
  496. "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
  497. )
  498. pdf_docs = fitz.open("pdf", pdf_bytes)
  499. magic_model = MagicModel(model_list, pdf_docs)
  500. for i in range(7):
  501. print(magic_model.get_imgs(i))