| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- from torch import nn
- from ..backbones import build_backbone
- from ..heads import build_head
- from ..necks import build_neck
- class BaseModel(nn.Module):
- def __init__(self, config, **kwargs):
- """
- the module for OCR.
- args:
- config (dict): the super parameters for module.
- """
- super(BaseModel, self).__init__()
- in_channels = config.get("in_channels", 3)
- model_type = config["model_type"]
- # build backbone, backbone is need for del, rec and cls
- if "Backbone" not in config or config["Backbone"] is None:
- self.use_backbone = False
- else:
- self.use_backbone = True
- config["Backbone"]["in_channels"] = in_channels
- self.backbone = build_backbone(config["Backbone"], model_type)
- in_channels = self.backbone.out_channels
- # build neck
- # for rec, neck can be cnn,rnn or reshape(None)
- # for det, neck can be FPN, BIFPN and so on.
- # for cls, neck should be none
- if "Neck" not in config or config["Neck"] is None:
- self.use_neck = False
- else:
- self.use_neck = True
- config["Neck"]["in_channels"] = in_channels
- self.neck = build_neck(config["Neck"])
- in_channels = self.neck.out_channels
- # # build head, head is need for det, rec and cls
- if "Head" not in config or config["Head"] is None:
- self.use_head = False
- else:
- self.use_head = True
- config["Head"]["in_channels"] = in_channels
- self.head = build_head(config["Head"], **kwargs)
- self.return_all_feats = config.get("return_all_feats", False)
- self._initialize_weights()
- def _initialize_weights(self):
- # weight initialization
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.ones_(m.weight)
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- elif isinstance(m, nn.ConvTranspose2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out")
- if m.bias is not None:
- nn.init.zeros_(m.bias)
- def forward(self, x):
- y = dict()
- if self.use_backbone:
- x = self.backbone(x)
- if isinstance(x, dict):
- y.update(x)
- else:
- y["backbone_out"] = x
- final_name = "backbone_out"
- if self.use_neck:
- x = self.neck(x)
- if isinstance(x, dict):
- y.update(x)
- else:
- y["neck_out"] = x
- final_name = "neck_out"
- if self.use_head:
- x = self.head(x)
- # for multi head, save ctc neck out for udml
- if isinstance(x, dict) and "ctc_nect" in x.keys():
- y["neck_out"] = x["ctc_neck"]
- y["head_out"] = x
- elif isinstance(x, dict):
- y.update(x)
- else:
- y["head_out"] = x
- if self.return_all_feats:
- if self.training:
- return y
- elif isinstance(x, dict):
- return x
- else:
- return {final_name: x}
- else:
- return x
|