| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- import copy
- import platform
- import time
- import cv2
- import numpy as np
- import torch
- from paddleocr import PaddleOCR
- from ppocr.utils.logging import get_logger
- from ppocr.utils.utility import alpha_to_color, binarize_img
- from tools.infer.predict_system import sorted_boxes
- from tools.infer.utility import get_rotate_crop_image, get_minarea_rect_crop
- from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import update_det_boxes, merge_det_boxes, check_img, \
- ONNXModelSingleton
- logger = get_logger()
- class ModifiedPaddleOCR(PaddleOCR):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.lang = kwargs.get('lang', 'ch')
- # 在cpu架构为arm且不支持cuda时调用onnx、
- if not torch.cuda.is_available() and platform.machine() in ['arm64', 'aarch64']:
- self.use_onnx = True
- onnx_model_manager = ONNXModelSingleton()
- self.additional_ocr = onnx_model_manager.get_onnx_model(**kwargs)
- else:
- self.use_onnx = False
- def ocr(self,
- img,
- det=True,
- rec=True,
- cls=True,
- bin=False,
- inv=False,
- alpha_color=(255, 255, 255),
- mfd_res=None,
- ):
- """
- OCR with PaddleOCR
- args:
- img: img for OCR, support ndarray, img_path and list or ndarray
- det: use text detection or not. If False, only rec will be exec. Default is True
- rec: use text recognition or not. If False, only det will be exec. Default is True
- cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
- bin: binarize image to black and white. Default is False.
- inv: invert image colors. Default is False.
- alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
- """
- assert isinstance(img, (np.ndarray, list, str, bytes))
- if isinstance(img, list) and det == True:
- logger.error('When input a list of images, det must be false')
- exit(0)
- if cls == True and self.use_angle_cls == False:
- pass
- # logger.warning(
- # 'Since the angle classifier is not initialized, it will not be used during the forward process'
- # )
- img = check_img(img)
- # for infer pdf file
- if isinstance(img, list):
- if self.page_num > len(img) or self.page_num == 0:
- self.page_num = len(img)
- imgs = img[:self.page_num]
- else:
- imgs = [img]
- def preprocess_image(_image):
- _image = alpha_to_color(_image, alpha_color)
- if inv:
- _image = cv2.bitwise_not(_image)
- if bin:
- _image = binarize_img(_image)
- return _image
- if det and rec:
- ocr_res = []
- for img in imgs:
- img = preprocess_image(img)
- dt_boxes, rec_res, _ = self.__call__(img, cls, mfd_res=mfd_res)
- if not dt_boxes and not rec_res:
- ocr_res.append(None)
- continue
- tmp_res = [[box.tolist(), res]
- for box, res in zip(dt_boxes, rec_res)]
- ocr_res.append(tmp_res)
- return ocr_res
- elif det and not rec:
- ocr_res = []
- for img in imgs:
- img = preprocess_image(img)
- if self.lang in ['ch'] and self.use_onnx:
- dt_boxes, elapse = self.additional_ocr.text_detector(img)
- else:
- dt_boxes, elapse = self.text_detector(img)
- if dt_boxes is None:
- ocr_res.append(None)
- continue
- dt_boxes = sorted_boxes(dt_boxes)
- # merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
- dt_boxes = merge_det_boxes(dt_boxes)
- if mfd_res:
- bef = time.time()
- dt_boxes = update_det_boxes(dt_boxes, mfd_res)
- aft = time.time()
- logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
- len(dt_boxes), aft - bef))
- tmp_res = [box.tolist() for box in dt_boxes]
- ocr_res.append(tmp_res)
- return ocr_res
- else:
- ocr_res = []
- cls_res = []
- for img in imgs:
- if not isinstance(img, list):
- img = preprocess_image(img)
- img = [img]
- if self.use_angle_cls and cls:
- img, cls_res_tmp, elapse = self.text_classifier(img)
- if not rec:
- cls_res.append(cls_res_tmp)
- if self.lang in ['ch'] and self.use_onnx:
- rec_res, elapse = self.additional_ocr.text_recognizer(img)
- else:
- rec_res, elapse = self.text_recognizer(img)
- ocr_res.append(rec_res)
- if not rec:
- return cls_res
- return ocr_res
- def __call__(self, img, cls=True, mfd_res=None):
- time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
- if img is None:
- logger.debug("no valid image provided")
- return None, None, time_dict
- start = time.time()
- ori_im = img.copy()
- if self.lang in ['ch'] and self.use_onnx:
- dt_boxes, elapse = self.additional_ocr.text_detector(img)
- else:
- dt_boxes, elapse = self.text_detector(img)
- time_dict['det'] = elapse
- if dt_boxes is None:
- logger.debug("no dt_boxes found, elapsed : {}".format(elapse))
- end = time.time()
- time_dict['all'] = end - start
- return None, None, time_dict
- else:
- logger.debug("dt_boxes num : {}, elapsed : {}".format(
- len(dt_boxes), elapse))
- img_crop_list = []
- dt_boxes = sorted_boxes(dt_boxes)
- # merge_det_boxes 和 update_det_boxes 都会把poly转成bbox再转回poly,因此需要过滤所有倾斜程度较大的文本框
- dt_boxes = merge_det_boxes(dt_boxes)
- if mfd_res:
- bef = time.time()
- dt_boxes = update_det_boxes(dt_boxes, mfd_res)
- aft = time.time()
- logger.debug("split text box by formula, new dt_boxes num : {}, elapsed : {}".format(
- len(dt_boxes), aft - bef))
- for bno in range(len(dt_boxes)):
- tmp_box = copy.deepcopy(dt_boxes[bno])
- if self.args.det_box_type == "quad":
- img_crop = get_rotate_crop_image(ori_im, tmp_box)
- else:
- img_crop = get_minarea_rect_crop(ori_im, tmp_box)
- img_crop_list.append(img_crop)
- if self.use_angle_cls and cls:
- img_crop_list, angle_list, elapse = self.text_classifier(
- img_crop_list)
- time_dict['cls'] = elapse
- logger.debug("cls num : {}, elapsed : {}".format(
- len(img_crop_list), elapse))
- if self.lang in ['ch'] and self.use_onnx:
- rec_res, elapse = self.additional_ocr.text_recognizer(img_crop_list)
- else:
- rec_res, elapse = self.text_recognizer(img_crop_list)
- time_dict['rec'] = elapse
- logger.debug("rec_res num : {}, elapsed : {}".format(
- len(rec_res), elapse))
- if self.args.save_crop_res:
- self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
- rec_res)
- filter_boxes, filter_rec_res = [], []
- for box, rec_result in zip(dt_boxes, rec_res):
- text, score = rec_result
- if score >= self.drop_score:
- filter_boxes.append(box)
- filter_rec_res.append(rec_result)
- end = time.time()
- time_dict['all'] = end - start
- return filter_boxes, filter_rec_res, time_dict
|